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Emil Post and His Anticipation
of Godel and Turing

JOHN STILLWELL

University of San Francisco
San Francisco, CA 94117
stillwell@usfca.edu

Emil Post is known to specialists in mathematical logic for several ideas in logic and
computability theory: the structure theory of recursively enumerable sets, degrees of
unsolvability, and the Post “correspondence problem.” However, he should be known
to a much wider audience. In the 1920s he discovered the incompleteness and unsolv-
ability theorems that later made Gdédel and Turing famous. Post missed out on the
credit because he failed to publish his results soon enough, or in enough detail. His
achievements were known to most of his contemporaries in logic, but this was sel-
dom acknowledged in print, and he now seems to be slipping into oblivion. Recent
comprehensive publications, such as Godel’s collected works and the popular history
of computation by Martin Davis [3] contain only a few words about Post, mostly in
footnotes.

In this article I hope to redress the balance a little by telling Post’s side of the story
and presenting the gist of his ideas. This is not merely to give Post his due; it gives
the opportunity to present Post’s approach to Godel’s incompleteness theorem, which
is not only more general than Godel’s but also simpler. As well as this, Post drew
some nontechnical conclusions from the incompleteness theorem- —about the interplay
between symbolism, meaning, and understanding-—that deserve wide circulation in
mathematics classrooms.

Post’s life and career

Post’s life occupied roughly the first half of the 20th century. Here is a brief summary
of the main events.

1897 February 11: born Augustéw, Poland.

1904 May: emigrated to New York.

1917 B.S. from City College.

1920 Ph.D. from Columbia.

1921 Decidability and completeness of propositional logic in Amer. J. Math. Foresaw
undecidability and incompleteness of general formal systems.

1936 Independent discovery of Turing machines in J. Symb. Logic.

1938 October 28: met with Godel to outline his discoveries.

1941 Submitted his “Account of an Anticipation” to Amer. J. Math.

1944 Paper on recursively enumerable sets in Bull. Amer. Math. Soc.

1947 Proved unsolvability of word problem for semigroups in J. Symb. Logic.
1954 Died in New York.

I shall elaborate on his discoveries, particularly the unpublished ones, below. But
first it is important to appreciate the personal background of his work. Post’s life was
in some ways a typical immigrant success story: His family brought him to New York
as a child, he studied and worked hard and, with the help of a supportive wife and
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daughter, obtained a position at City College of New York and some renown in his
field of research. However, life was tougher for Post than this brief outline would
suggest.

When quite young he lost his left arm in an accident, and this ended his early dream
of a career in astronomy. Around the age of 13, Post wrote to several observatories ask-
ing whether his disability would prevent his becoming an astronomer. Harvard College
Observatory thought not, but the head of the U.S. Naval Observatory replied that it
would, because “the use of both hands is necessary in all the work of this observatory.”
Post apparently took his cue from the latter, gave up on astronomy, and concentrated
on mathematics instead.

He attended Townsend Harris High School and City College in New York, obtaining
a B.S. in mathematics in 1917. As an undergraduate he did original work in analysis
which was eventually published in 1930. It includes a result on the Laplace transform
now known as the Post-Widder inversion formula. From 1917 to 1920, Post was a
graduate student in mathematical logic at Columbia. Part of his thesis, in which he
proves the completeness and consistency of the propositional calculus of Whitehead
and Russell’s Principia Mathematica, was published in the American Journal of Math-
ematics [8].

In 1920-1921 he held a post-doctoral fellowship at Princeton. During this time he
tried to analyze the whole Principia, with a view to proving its completeness and
consistency as he had done for propositional calculus. This was the most ambitious
project possible, because the axioms of Principia were thought to imply all theorems of
mathematics. Nevertheless, Post made some progress: He showed that all theorems
of Principia (and probably of any conceivable symbolic logic) could be derived by
simple systems of rules he called normal systems. At first this looked like a great step
forward. But as he struggled to analyze even the simplest normal systems, Post realized
that the situation was the opposite of what he had first thought: instead of simplifying
Principia, he had merely distilled its complexity into a smaller system.

Sometime in 1921, as he later claimed, he caught a glimpse of the true situation:

* Normal systems can simulate any symbolic logic, indeed any mechanical system for
deriving theorems.

* This means, however, that all such systems can be mechanically listed, and the di-
agonal argument then shows that the general problem of deciding whether a given
theorem is produced by a given system is unsolvable.

* It follows, in turn, that no consistent mechanical system can produce all theorems.

I shall explain these discoveries of Post in more detail below. They include (in dif-
ferent form) the discoveries of Turing on the nature of computability and unsolvability,
and Godel’s theorem on the incompleteness of formal systems for mathematics.

In 1921, Post suffered an attack of manic-depressive illness (as bipolar disorder
was known at the time), and his work was disrupted at the height of his creative fever.
The condition recurred quite frequently during his life, necessitating hospitalization
and preventing Post from obtaining an academic job until 1935. To avert the manic
episodes, Post would give himself two problems to work on, switching off the one
that was going well when he found himself becoming too excited. This did not always
work, however, and Post often received the electroshock treatment that was thought
effective in those days. (His death from a heart attack at the early age of 57 occurred
shortly after one such treatment.)

In 1935, Post gained a foothold in academia with a position at City College of
New York. The teaching load was 16 hours per week, and all faculty shared a single
large office, so Post did most of his research at home, where his daughter Phyllis was
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required not to disturb him and his wife Gertrude handled all day-to-day concerns. As
Phyllis later wrote (quoted by Davis [2]):

My father was a genius; my mother was a saint ... the buffer in daily life that
permitted my father to devote his attention to mathematics (as well as to his
varied interests in contemporary world affairs). Would he have accomplished so
much without her? I, for one, don’t think so.

By this time Post had seen two of his greatest ideas rediscovered by others. In 1931
Godel published his incompleteness theorem, and in 1935 Church stated Church’s the-
sis, which proposes a definition of computability and implies the existence of unsolv-
able problems. Church’s definition of computability was not immediately convincing
(at least not to Godel), and some equivalent definitions were proposed soon after. The
one that convinced Godel was Turing’s [14], now known as the Turing machine. Post’s
normal systems, another equivalent of the computability concept, were still unpub-
lished. But this time Post had a little luck. Independently of Turing, and at the same
time, he had reformulated his concept of computation—and had found a concept vir-
tually identical with Turing’s! It was published in a short paper [9] in the 1936 Journal
of Syinbolic Logic, with a note from Church affirming its independence from Turing’s
work.

This gave Post some recognition, but he was still in Turing’s shadow. Turing had
written a fuller paper, with clearer motivation and striking theorems on the existence
of a universal machine and unsolvable problems. The world knew that Post had also
found the definition of computation, but did not know that he had already seen the
consequences of such a definition in 1921. In 1938, he met Godel and tried to tell him
his story. Perhaps the excitement was too much for Post, because he seems to have
feared that he had not made a good impression. The next day, October 29, 1938, he
sent Godel a postcard that reads as follows:

I am afraid that I took advantage of you on this, I hope but our first meeting. But
for fifteen years I had carried around the thought of astounding the mathematical
world with my unorthodox ideas, and meeting the man chiefly responsible for
the vanishing of that dream rather carried me away.

Since you seemed interested in my way of arriving at these new developments
perhaps Church can show you a long letter I wrote to him about them. As for any
claims I might make perhaps the best I can say is that { would have have proved
Godel’s theorem in 1921—had I been Godel.

After a couple more letters from Post, Godel replied. He courteously assured Post
that he had not regarded Post’s claims as egotistical, and that he found Post’s approach
interesting, but he did not take the matter any further.

In 1941, Post made another attempt to tell his story, in a long and rambling paper
“Absolutely unsolvable problems and relatively undecidable propositions—an account
of an anticipation” submitted to the American Journal of Mathematics. The stream-of-
consciousness style of parts of the paper and lack of formal detail made it unpub-
lishable in such a journal, though Post received a sympathetic reply from the editor,
Hermann Weyl. On March 2, 1942, Weyl wrote

... I have little doubt that twenty years ago your work, partly because of its
revolutionary character, did not find its true recognition. However, we cannot
turn the clock back ... and the American Journal is not the place for historical
accounts ... (Personally, you may be comforted by the certainty that most of



6 MATHEMATICS MAGAZINE

the leading logicians, at least in this country, know in a general way of your
anticipation.)

Despite these setbacks Post continued his research. In fact his most influential work
was yet to come. In 1943, he was invited to address the American Mathematical So-
ciety, and his writeup of the talk [11] introduced his groundbreaking theory of re-
cursively enumerable sets. Among other things, this paper sets out his approach to
Godel’s theorem, which is perhaps ultimate in both simplicity and generality. This was
followed in 1945 by a short paper [12], which introduces the “Post correspondence
problem,” an unsolvable problem with many applications in the theory of computa-
tion. The correspondence problem can be viewed as a problem about free semigroups,
and in 1947, Post showed the unsolvability of an even more fundamental problem
about semigroups—the word problem [13].

The unsolvability of this problem is the first link in a chain between logic and group
theory and topology. The chain was completed by Novikov [7] in 1955, who proved
the unsolvability of the word problem for groups, by Markov [6] in 1958, who deduced
from it the unsolvability of the homeomorphism problem for compact manifolds, and
by Higman [5] in 1961, who showed that “computability” in groups is equivalent to
the classical concept of finite generation.

Thus Post should be celebrated, not only for his fundamental work in logic, but
also for constructing a bridge between logic and classical mathematics. Few people
today cross that bridge, but perhaps if Post’s work were better known, more would be
encouraged to make the journey.

Formal systems

In the late 19th century several new branches of mathematics emerged from problems
in the foundations of algebra, geometry, and analysis. The rise of new algebraic sys-
tems, noneuclidean geometry, and with them the need for new foundations of analysis,
created the demand for greater clarity in both the subject matter and methods of math-
ematics. This led to:

1. Symbolic logic, where all concepts of logic were expressed by symbols and deduc-
tion was reduced to the process of applying rules of inference.

2. Set theory, in which all mathematical concepts were defined in terms of sets and
the relations of membership and equality.

3. Axiomatics, in which theorems in each branch of mathematics were deduced from
appropriate axioms.

Around 1900, these branches merged in the concept of a formal system, a sym-
bolic language capable of expressing all mathematical concepts, together with a set
of propositions (axioms) from which theorems could be derived by specific rules of
inference. The definitive formal system of the early 20th century was the Principia
Mathematica of Whitehead and Russell [15].

The main aims of Principia Mathematica were rigor and completeness. The sym-
bolic language, together with an explicit statement of all rules of inference, allows
theorems to be derived only if they are logical consequences of the axioms. It is im-
possible for unconscious assumptions to sneak in by seeming “obvious.” In fact, all
deductions in the Principia system can in principle be carried out without knowing the
meaning of the symbols, since the rules of inference are pure symbol manipulations.
Such deductions can be carried out by a machine, although this was not the intention of
Principia, since suitable machines did not exist when it was written. The intention was
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to ensure rigor by keeping out unconscious assumptions, and in these terms Principia
was a complete success.

As for completeness, the three massive volumes of Principia were a “proof by in-
timidation” that all the mathematics then in existence was deducible from the Principia
axioms, but no more than that. It was not actually known whether Principia was even
logically complete, that is, capable of deriving all valid principles of logic. In 1930,
Godel proved its logical completeness, but soon after he proved its mathematical in-
completeness. We are now getting ahead of our story, but the underlying reason for
Godel’s incompleteness theorem can be stated here: the weakness of Principia (and all
similar systems) is its very objectivity. Since Principia can be described with complete
precision, it is itself a mathematical object, which can be reasoned about. A simple but
ingenious argument then shows that Principia cannot prove all facts about itself, and
hence it is mathematically incomplete.

Post’s program

Post began his research in mathematical logic by proving the completeness and consis-
tency of propositional logic. This logic has symbols for the words or and not—today
the symbols v and — are commonly used—and variables P, Q, R, ... for arbitrary
propositions. For example, P v Q denotes “P or Q”, and (—P) Vv Q denotes “(not
P) or Q”. The latter is commonly abbreviated P — ( because it is equivalent to “P
implies Q.

Principia Mathematica gave certain axioms for propositional logic, such as (P v
P) — P, and certain rules of inference such as the classical rule of modus ponens:
from P and P — Q, infer Q. Post proved that all valid formulas of propositional
logic follow from the axioms by means of these rules, so Principia is complete as far
as propositional logic is concerned.

Post also showed that propositional logic is consistent, by introducing the now fa-
miliar device of truth tables. Truth tables assign to each axiom the value “true,” and
each rule of inference preserves the value “true,” so all theorems have the value “true”
and hence are true in the intuitive sense. The same idea also shows that propositional
logic is consistent in the formal sense. That is, it does not prove any proposition P to-
gether with its negation — P, since if one of these has the value “true” the other has the
value “false.” Together, the two results solve what Post called the finiteness problem
for propositional logic: to give an algorithm that determines, for any given proposition,
whether it is a theorem.

We now know that propositional logic is far easier than the full Principia. Indeed
Post’s results were already known to Bernays and Hilbert in 1918, though not pub-
lished (see, for example, Zach [16]). However, what is interesting is that Post went
straight ahead, attempting to analyze arbitrary rules of inference. He took a “rule of
inference” to consist of a finite set of premises

gu P, 812Pi, .. &im, Pi],,,] 81(my+1)

821Piy 822 Piy, - - - 82my Piy,,, 826my 1)

81 Py g2 Piyy - - - Glomy Py, 8kimy 1)

which together produce a conclusion

&P g Py gm P 8mi
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The g;; are certain specific symbols or strings of symbols, such as the — symbol in
modus ponens, and the P, are arbitrary strings (such as the P and Q in modus ponens).
Each Py, in the conclusion is in at least one of the premises. Such “rules” include all
the rules of Principia and, Post thought, any other rules that draw conclusions from
premises in a determinate way.

The problem of analyzing such “production systems” amounts to understanding
all possible formal systems, a task of seemingly overwhelming proportions. However,
Post initially made surprising progress. By the end of the 1920-21 academic year he
had proved his normal form theorem, which says that the theorems of any production
system can be produced by a normal system with a single axiom and rules of only the
simple form

gP produces Pg'.

In other words, any string beginning with the specific string g may be replaced by the
string in which g is removed and g’ is attached at the other end.

Normal systems include an even simpler class of systems that Post called “tag”
systems, in which each g’ depends only on the initial letter of g and all g have the
same length. One such system uses only the letters 0 and 1, and each g has length 3. If
g begins with 0, then g’ = 00, and if g begins with 1 then g’ = 1101. The left-hand end
of the string therefore advances by three places at each step, trying to “tag” the right-
hand end which advances by two or four places. For example, here is what happens
when the initial string is 1010:

1010
01101
0100
000
00
0

and then the string becomes empty. In all cases that Post tried, the result was either
termination (as here) or periodicity, but he was unable to decide whether this was
always the case. In fact, as far as I know the general behavior of this tag system is still
not known. Post tried reducing the length of g and allowing more than two symbols,
but it did not help.

. when this possibility was explored in the early summer of 1921, it rather led
to an overwhelming confusion of classes of cases, with the solution of the cor-
responding problem depending more and more on problems in ordinary number
theory. Since it had been our hope that the known difficulties of number theory
would, as it were, be dissolved in the particularities of this more primitive form
of mathematics, the solution of the general problem of “tag” appeared hopeless,
and with it our entire program of the solution of finiteness problems. [10, p. 24]

After a few fruitless attempts to escape the difficulties with different normal forms,
Post realized what the true situation must be: Theorems can indeed be produced by
simple rules, but only because any computation can be reduced to simple steps. Pre-
dicting the outcome of simple rules, however, is no easier than deciding whether arbi-
trary sentences of mathematics are theorems. This
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fuller realization of the significance of the previous reductions led to a reversal
of our entire program. [10, p. 44]

The reverse program was easier than the one he had set himself initially, which was
essentially the following:

1. Describe all possible formal systems.
2. Simplify them.
3. Hence solve the deducibility problem for all of them.

Post’s success in reducing complicated rules to simple ones convinced him that, for
any system generating strings of symbols, there is a normal system that generates the
same strings. But it is possible to enumerate all normal systems, since each consists
of finitely many strings of symbols on a finite alphabet, and hence it is possible to
enumerate all systems for generating theorems. This invites an application of the di-
agonal argument, described below. The outcome is that for certain formal systems the
deducibility problem is unsolvable.

After this dramatic change of direction Post saw the true path as follows:

1. Describe all possible formal systems.
2. Diagonalize them.
3. Show that some of them have unsolvable deducibility problem.

And he also saw one step further—the incompleteness theorem—because:

4. No formal system obtains all the answers to an unsolvable problem.

Post’s approach to incompleteness

We shall deal with Step 4 of Post’s program first, because it is quite simple, and it
dispels the myth that incompleteness is a difficult concept. Certainly, it rests on the
concept of computability, but today we can define computability as “computable by
a program in some standard programming language,” and most readers will have a
reasonable idea what this means.

Letus define an algorithmic problem, or simply problem, to be a computable list of
questions:

P = (Qh Q27 Q33 >
For example, the problem of recognizing primes is the list
(“Is 1 prime?”, “Is 2 prime?”, “Is 3 prime?”, .. .)

A problem is said to be unsolvable if the list of answers is not computable. The prob-
lem of recognizing primes is of course solvable.

Now suppose that an unsolvable P = (Q,, O», O3, . ..) exists.

Then no consistent formal system F' proves all correct sentences of the form

“The answer to Q; is A;.”,

since by systematically listing all the theorems of ' we could compute a list of answers
to problem P.

Thus any consistent formal system F is incomplete with respect to sentences of the
form “The answer to Q; is A;”: there are some true sentences of this form that F' does
not prove.
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It is true that there are several matters arising from this argument. What is the sig-
nificance of consistency? Are there unprovable sentences in mainstream mathematics?
But for Post incompleteness was a simple consequence of the existence of unsolvable
problems. He also saw unsolvable problems as a simple consequence of the diagonal
argument (described in the next section).

The really big problem, in Post’s view, was to show that all computation is reflected
in normal systems. Without a precise definition of computation, the concept of un-
solvable problem is meaningless. Godel was lucky not to be aware of this very general
approach to incompleteness. His approach was to analyze Principia Mathematica (and
“related systems”) and prove its incompleteness directly. He did not see incomplete-
ness as a consequence of unsolvability, in fact did not believe that computability could
be precisely defined until he read Turing’s paper [14], where the concept of Turing
machine was defined.

Thus Post’s proof of incompleteness was delayed because he was trying to do so
much: The task he set himself in 1921 was in effect to do most of what Godel, Church,
and Turing did among them in 1931-36. In 1936, Church published a definition of
computability [1] and gave the first published example of an unsolvable problem. But
“Church’s thesis”—that here was a precise definition of computability—was not ac-
cepted until the equivalent Turing machine concept appeared later in 1936, along with
Turing’s very lucid arguments for it.

As mentioned above, Post arrived at a similar concept independently [9], so in fact
he completed his program in 1936. By then, unfortunately, it was too late for him to
get credit for anything except a small share of the computability concept.

The diagonal argument

The diagonal argument is a very flexible way of showing the incompleteness of infinite
lists: lists of real numbers, lists of sets of natural numbers, and lists of functions of
natural numbers. It was perhaps implicit in Cantor’s 1874 proof of the uncountability
of the real numbers, but it first became clear and explicit in his 1891 proof, which goes
as follows.

Suppose that x|, x5, x3, ... is a list of real numbers. More formally, suppose that to
each natural number n there corresponds a real number x,,, and imagine a tabulation of
the decimal expansions of these numbers one above the other, say

x; =3.14159. ..
X, =2.71828...
X3 = 1.41421. ..
xy =0.57721 ...
xs = 1.61803. ..

A number x not on the list can always be constructed by making x differ from each x,
in the nth decimal place. For example, one can take the nth decimal place of x to be 1
if the nth decimal place of x, is not 1, and 2 if the nth decimal place of x, is 1. With
the list above, we get the number

x =022111....
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The method for producing this new number x is called “diagonal,” because it involves
only the diagonal digits in the tabulation of x,, x5, x3, . . ..

It is commonly thought that the diagonal method is nonconstructive, but in fact the
diagonal number x is clearly computable from the tabulation of x|, x,, x3, . ... Indeed,
one needs to compute only one decimal place of x,, two decimal places of x,, three
decimal places of x3, and so on. Turing observed that this tells us something interesting
about computable real numbers [14].

It is not the case that there are uncountably many computable reals, because there
are only countably many Turing machines (or programs in a fixed programming lan-
guage, as we would prefer to define the concept of computation today) and at most one
computable number is defined by each machine. Indeed, a real number is defined only
if the machine behaves in a special way. In Turing’s formulation the machine must
print the successive digits of the number on specified squares of the machine’s tape
and must not change any digit once it is printed.

It would therefore seem, by the diagonal argument, that we could compute a number
x different from each of the computable numbers x|, x,, x3, .... What is the catch?

There is no problem computing a list of all Turing machines, or programs. All of
them are sequences of letters in a fixed finite alphabet, so they can be enumerated in
lexicographic order. Also, once each machine is written down we can run it to produce
digits of the number it defines, if any. The catch is that we cannot identify all the
machines that define computable real numbers. The problem of recognizing all such
machines is unsolvable in the sense that no Turing machine can correctly answer all
the questions

Does machine | define a computable real?
Does machine 2 define a computable real?
Does machine 3 define a computable real? . ...

There cannot be a Turing machine that solves this problem, otherwise we could hook
it up to a machine that diagonalizes all the computable numbers and hence compute a
number that is not computable.

What prevents the identification of machines that define computable numbers?
When one explores this question, other unsolvable problems come to light. For ex-
ample, we could try to catch all machines that fail to define real numbers by attaching
to each one a device that halts computation as soon as the machine makes a misstep,
such as changing a previously printed digit. As Turing pointed out, this implies the un-
solvability of the halting problem: to decide, for any machine and any input, whether
the machine eventually halts (or performs any other specific act). This problem is a
perpetual thorn in the side of computer programmers, because it means that there is no
general way to decide whether programs do what they are claimed to do. Unsolvable
problems also arise in logic and mathematics, because systems such as predicate logic
and number theory are capable of simulating all Turing machines. This is how Church
and Turing proved the unsolvability of the Entscheidungsproblem, the problem of
deciding validity of formulas in predicate logic.

Post’s application of the diagonal argument Post also used the diagonal argument,
but in the form used by Cantor (1891) to prove that any set has more subsets than ele-
ments. Given any set X, suppose each member x € X is paired with a subset S, € X.
Then the diagonal subset D C X defined by

xeD < x g8

is different from each S, with respect to the element x.
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The computable version of the diagonal argument takes X to be the set N of natural
numbers, and for each n € N, what Post called the nth recursively enumerable subset
S, of N. A recursively enumerable (r.e.) set is one whose members may be computably
listed, and there are various ways to pair Turing machines with r.e. sets. For example,
S, may be defined as the set of input numbers m for which the nth machine has a
halting computation. There is no loss of generality in considering the elements of an
r.e. set to be numbers, because any string of symbols (in a fixed alphabet) can be
encoded by a number.

A typical r.e. set is the set of theorems of a formal system, which is why Post was
interested in the concept. Each theorem 7 is put into a machine, which systemati-
cally applies all rules of inference to the axioms, halting if and only if T is produced.
Another example, which gives the flavor of the concept in a setting more familiar to
mathematicians, consists of the strings of digits between successive 9s in the decimal
expansion of i. Since

7 = 3.14159265358979323846264338327950288419716939937510. . .,

the set in question is
S = {265358, 7, 323846264338327, 5028841, 716, 3, .. .}.

It is clear that a list of members of S can be computed, since 7 is a computable number,
but otherwise S is quite mysterious. We do not know how to decide membership for
S, or even whether S is infinite. This is typical of r.e. sets, and useful to keep in mind
when constructing r.e. sets that involve arbitrary computations.

The diagonal set D is not r.e., being different from the nth r.e. set S, with respect to
the number n; however, its complement D is r.e. This is because

nef)—eneS,l,

so any n € D will eventually be found by running the nth machine on input n. Thus
D is an example of an r.e. set whose complement is not r.e.. It follows that no machine
can decide, for each n, whether n € D (or equivalently, whether n € S,)). If there were
such a machine, we could list all the members of D by asking

Is1eS?
Is2 € $,?
Is3 € 537

and collecting the n for which the answer is no.

It also follows that no consistent formal system can prove all theorems of the form
n & S,, since this would yield a listing of D. This is a version of the incompleteness
theorem, foreseen by Post in 1921, but first published by Godel in 1931 [4].

Differences between Post and Godel

As we have seen, Post’s starting point was the concept of computation, which he be-
lieved could be formalized and made subject to the diagonal argument. Diagonaliza-
tion yields problems that are absolutely unsolvable, in the sense that no computation
can solve them. In turn, this leads to relatively undecidable propositions, for example,
propositions of the form n ¢ §,. No consistent formal system F can prove all true
propositions of this form, hence any such F must fail to prove some true proposition
no & Sy, But this proposition is only relatively undecidable, not absolutely, because
F can be consistently extended by adding it as an axiom.
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Godel did not at first believe in absolutely unsolvable problems, because he did not
believe that computation is a mathematical concept. Instead, he proved the existence of
relatively undecidable propositions directly, by constructing a kind of diagonal argu-
ment inside Principia Mathematica. Also, he arithmetized the concept of proof there,
so provability is expressed by a number-theoretic relation, and his undecidable propo-
sition belongs to number theory. Admittedly, Gédel’s proposition is not otherwise in-
teresting to number theorists, but Godel saw that it is interesting for another reason: it
expresses the consistency of Principia Mathematica.

This remarkable fact emerges when one pinpoints the role, in the incompleteness
proof, of the assumption that the formal system F is consistent, as we will soon ex-
plain. It seems that Godel deserves full credit for this observation, which takes logic
even higher than the level reached with the discovery of incompleteness.

Outsmarting a formal system We now reflect on Post’s incompleteness proof for
a formal system F, to find an explicit ny such that n, ¢ S, is true but not provable
by F.

It is necessary to assume that F is consistent, because an inconsistent formal sys-
tem (with a modicum of ordinary logic) proves everything. In fact it is convenient to
assume more, namely, that /* proves only true propositions. Now consider the r.e. set
of propositions of the form n ¢ S, proved by F'. The corresponding numbers n also
form an r.e. set, with index 1 say. That is,

gy

Sy, = {n: Foprovesn ¢ §,}.

By definition of S, , ny € S, implies that £ proves the proposition ny ¢ S,,. But if
s0, iy &€ S, is true. and we have a contradiction. Thus the truth is that n, & S,,, but F
does not prove this fuct.

It seems that we know more than F', but how come? The “extra smarts” needed to
do better than F' lie in the ability to recognize that F is consistent (or, strictly speaking,
that all theorems of F are true). In fact, what we have actually proved is the theorem

COH(F) — Ny ¢ S(],

where Con(F') is a proposition that expresses the consistency of F. It follows that
Con(F) is not provable in F, otherwise the proposition 1y € S,, would also be prov-
able (by modus ponens). But if we can “see” Con(F'), then we can “see” ny € S,,.

If Fis a really vast system, like Principia Mathematica or a modern system of
set theory, then it takes a lot of chutzpah to claim the ability to see Con(F'). But the
incompleteness argument also applies to modest systems of number theory, which ev-
erybody believes to be consistent, because we know an interpretation of the axioms:
1,2, 3, ... stand for the natural numbers, + stands for addition, and so on. Thus the
ability to see meaning in a formal system F actually confers an advantage: It allows
us to see Con(F'), and hence to see propositions not provable by F'.

Now recall how this whole story began. Principia Mathematica and other formal
systems F were constructed in the belief that there was everything to gain (in rigor,
precision, and clarity) and nothing to lose in treating deduction as computation with
meaningless symbols. Godel showed that this is not the case. Loss of meaning causes
loss of theorems, such as Con(F). It is surprising how little this is appreciated. More
than 60 years ago Post wrote:

It is to the writer’s continuing amazement that ten years after Godel’s remark-
able achievement current views on the nature of mathematics are thereby affected
only to the point of seeing the need of many formal systems, instead of a univer-
sal one. Rather has it seemed to us to be inevitable that these developments will
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result in a reversal of the entire axiomatic trend of the late 19th and early 20th
centuries, with a return to meaning and truth. [10, p. 378]

Perhaps it is too much to expect a “reversal of the entire axiomatic trend,” but a milder
proposal seems long overdue. Post’s words should be remembered every time we plead
with our students not to manipulate symbols blindly, but to understand what they are
doing.

Acknowledgments. The biographical information in this article is drawn mainly from Martin Davis’s introduc-
tion to Post’s collected works [2] and the web site of the American Philosophical Society, where most of Post’s
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In addition to the standard definitions of the hyperbolic functions (for instance,
coshx = (e* + e7¥)/2), current calculus textbooks typically share two common fea-
tures: a comment on the applicability of these functions to certain physical problems
(for instance, the shape of a hanging cable known as the catenary) and a remark on
the analogies that exist between properties of the hyperbolic functions and those of
the trigonometric functions (for instance, the identities cosh?x — sinh>x = 1 and
cos x + sin® x = 1). Texts that offer historical sidebars are likely to credit develop-
ment of the hyperbolic functions to the 18th-century mathematician Johann Lambert.
Implicit in this treatment is the suggestion that Lambert and others were interested
in the hyperbolic functions in order to solve problems such as predicting the shape
of the catenary. Left hanging is the question of whether hyperbolic functions were
developed in a deliberate effort to find functions with trig-like properties that were
required by physical problems, or whether these trig-like properties were unintended
and unforeseen by-products of the solutions to these physical problems. The drama of
the early years of the hyperbolic functions is far richer than either of these plot lines
would suggest.

Prologue: The catenary curve

What shape is assumed by a flexible inextensible cord hung freely from two fixed
points? Those with an interest in the history of mathematics would guess (correctly)
that this problem was first resolved in the late 17th century and involved the Bernoulli
family in some way. The curve itself was first referred to as the “catenary” by Huygens
in a 1690 letter to Leibniz, but was studied as early as the 15th century by da Vinci.
Galileo mistakenly believed the curve would be a parabola [8]. In 1669, the German
mathematician Joachim Jungius (1587-1657) disproved Galileo’s claim, although his
correction does not seem to have been widely known within 17th-century mathemati-
cal circles.

17th-century mathematicians focused their attention on the problem of the catenary
when Jakob Bernoulli posed it as a challenge in a 1690 Acta Eruditorum paper in
which he solved the isochrone problem of constructing the curve along which a body
will fall in the same amount of time from any starting position. Issued at a time when
the rivalry between Jakob and Johann Bernoulli was still friendly, this was one of the
earliest challenge problems of the period. In June 1691, three independent solutions
appeared in Acta Eruditorum [1, 11, 16]. The proof given by Christian Huygens em-
ployed geometrical arguments, while those offered by Gottfried Leibniz and Johann
Bernoulli used the new differential calculus techniques of the day. In modern termi-
nology, the crux of Bernoulli’s proof was to show that the curve in question satisfies
the differential equation dy/d x = s/k, where s represents the arc length from the ver-
tex P to an arbitrary point Q on the curve and & is a constant depending on the weight
per unit length of cord as in FIGURE 1.
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Q

Figure 1 The catenary curve

Showing that y = k cosh(x/k) is a solution of this differential equation is an acces-
sible problem for today’s second-semester calculus student. 17th-century solutions of
the problem differed from those of today’s calculus students in a particularly notable
way: There was absolutely no mention of hyperbolic functions, or any other explicit
function, in the solutions of 1691! In these early days of calculus, curve constructions,
and not explicit functions, were cast in the leading roles.

A suggestion of this earlier perspective can be heard in a letter dated September 19,
1718 sent by Johann Bernoulli to Pierre Réymond de Montmort (1678-1719):

The efforts of my brother were without success; for my part, I was more fortu-
nate, for I found the skill (I say it without boasting, why should I conceal the
truth?) to solve it in full and to reduce it to the rectification of the parabola. It
is true that it cost me study that robbed me of rest for an entire night. It was
much for those days and for the slight age and practice I then had, but the next
morning, filled with joy, I ran to my brother, who was still struggling miserably
with this Gordian knot without getting anywhere, always thinking like Galileo
that the catenary was a parabola. Stop! Stop! I say to him, don’t torture yourself
any more to try to prove the identity of the catenary with the parabola, since it is
entirely false. The parabola indeed serves in the construction of the catenary, but
the two curves are so different that one is algebraic, the other is transcendental
... (as quoted by Kline [13, p. 473]).

The term rectification in this passage refers to the problem of determining the arc
length of a curve. The particular parabola used in Bernoulli’s construction (given by
y = x%/8 + 1 in modern notation) was defined geometrically by Bernoulli as having
“latus rectum quadruple the latus rectum of an equilateral hyperbola that shares the
same vertex and axis” [1, pp. 274-275]. Bernoulli used the arc length of the segment
of this parabola between the vertex B = (0, 1) and the point H = (/8(y — 1), y) to
construct a segment GE such that the point £ would lie on the catenary. In modern
notation, the length of segment GFE is the parabolic arc length BH, given by

Arclength = \/y2 — 1 +1In (y +y - 1) ’

while the catenary point E is given by

E = (—ln()'+\/y2——‘l),y> = (x,{——z—e_—x—).

The expression /y? — 1 in the arc length formula is the abscissa of the point
G(/y? — 1, y) on the equilateral hyperbola (y*> — x? = 1) that played both the central
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role described above in defining the parabola necessary for the construction, as well
as a supporting role in constructing the point £. Because a procedure for rectifying
a parabola was known by this time, this reduction of the catenary problem to the
rectification of a parabola provided a complete [7th-century solution to the catenary
problem.

hvoerbol cantenary
yperbola
<X ™~

| L

T parabola

Figure 2 Bernoulli’s construction of the catenary curve

Interestingly, another of the “first solvers™ of the catenary problem, Christian Huy-
gens, solved the rectification problem for the parabola as early as 1659. In fact, al-
though the rectification problem had been declared by Descartes as beyond the capac-
ity of the human mind [4, pp. 90-91], the problem of rectifying a curve C was known
to be equivalent to the problem of finding the area under an associated curve C’ by the
time Huygens took up the parabola question.

A general procedure for determining the curve ' was provided by Hendrick
van Heuraet (1634-1660) in a paper that appeared in van Schooten’s 1659 Latin
edition of Descartes’ La Geometrie. (In modern notation, C’ is defined by L(1) =
[“' V1 + (dy/dx)*dx, where vy = f(x) defines the original curve C.) Huygens used
this procedure to show that rectification of a parabola is equivalent to finding the
area under a hyperbola. A solution of this latter problem in the study of curves—
determining the area under a hyperbola—was first published by Gregory of St. Vin-
centin 1647 [13, p. 354]. Anton de Sarasa later recognized (in 1649) that St. Vincent’s
solution to this problem provided a method for computation of logarithmic values.

As impressive as these early “pre-calculus” calculus results were, by the time the
catenary challenge was posed by Jakob Bernoulli in 1690, the rate at which the study of
curves was advancing was truly astounding, thanks to the groundbreaking techniques
that had since been developed by Isaac Newton (1642-1727) and Gottfried Leibniz
(1646-1716). Relations between the Bernoulli brothers fared less well over the en-
suing decades, as indicated by a later passage from Johann Bernoulli’s 1718 letter to
Montmort:

But then you astonish me by concluding that my brother found a method of
solving this problem. ... I ask you, do you really think, if my brother had solved
the problem in question, he would have been so obliging to me as not to appear
among the solvers, just so as to cede me the glory of appearing alone on the stage
in the quality of the first solver, along with Messrs. Huygens and Leibniz? (as
quoted by Kline [13, p. 473])

Historical evidence supports Johann’s claim that Jakob was not a “first solver” of
the catenary problem. Butin the year immediately following that first solution, Jakob
Bernoulli and others solved several variations of this problem. Huygens, for example,
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used physical arguments to show that the curve is a parabola if the total load of cord
and suspended weights is uniform per horizontal foot, while for the true catenary,
the weight per foot along the cable is uniform. Both Bernoulli brothers worked on
determining the shape assumed by a hanging cord of variable density, a hanging cord
of constant thickness, and a hanging cord acted on at each point by a force directed
to a fixed center. Johann Bernoulli also solved the converse problem: given the shape
assumed by a flexible inelastic hanging cord, find the law of variation of density of
the cord. Another nice result due to Jakob Bernoulli stated that, of all shapes that may
be assumed by flexible inelastic hanging cord, the catenary has the lowest center of
gravity.

A somewhat later appearance of the catenary curve was due to Leonhard Euler in
his work on the calculus of variations. In his 1744 Methodus Inveniendi Lineas Curvas
Maximi Minimive Proprietate Gaudentes [5], Euler showed that a catenary revolved
about its axis (the catenoid) generates the only minimal surface of revolution. Calculat-
ing the surface area of this minimal surface is another straightforward exercise that can
provide a nice historical introduction to the calculus of variations for second-semester
calculus students. Kline [13, p. 579] comments that Euler himself did not make effec-
tive use of the full power of the calculus in the Methodus; derivatives were replaced by
difference quotients, integrals by finite sums, and extensive use was made of geomet-
ric arguments. In tracing the story of the hyperbolic functions, this last point cannot be
emphasized enough. From its earliest introduction in the 15th century through Euler’s
1744 result on the catenoid, there is no connection made between analytic expressions
involving the exponential function and the catenary curve. Indeed, prior to the develop-
ment of 18th-century analytic techniques, no such connection could have been made.
Calculus in the age of the Bernoullis was “the Calculus of Curves,” and the catenary
curve is just that—a curve. The hyperbolic functions did not, and could not, come into
being until the full power of formal analysis had taken hold in the age of Euler.

Act I: The hyperbolic functions in Euler?

In seeking the first appearance of the hyperbolic functions as functions, one naturally
looks to the works of Euler. In fact, the expressions (e¢* + e *)/2 and (e* —e™)/2
do make an appearance in Volume I of Euler’s Introductio in analysin infinitorum
(1745, 1748) [6]. Euler’s interest in these expressions seems natural in view of the
equations cos x = (V=" + e"/‘—"")/2 and v/—1sinx = (V™" — e"ﬁ'"’)/Z that he
derived in this text. However, Euler’s interest in what we call hyperbolic functions
appears to have been limited to their role in deriving infinite product representations
for the sine and cosine functions. Euler did not use the word hyperbolic in reference
to the expressions (e* + e7*)/2, (¢ — e™*)/2, nor did he provide any special notation
or name for them. Nevertheless, his use of these expressions is a classic example of
Eulerian analysis, included here as an illustration of 18th-century mathematics. An
analysis of this derivation, either in its historical form or in modern translation, would
be suitable for student projects in pre-calculus and calculus, or as part of a mathematics
history course.

To better illustrate the style of Euler’s analysis and the role played within it by
the hyperbolic expressions, we employ his notation from the Introductio throughout
this section. Although sufficiently like our own to make the work accessible to mod-
ern readers, there are interesting differences. For instance, Euler’s use of periods in
“sin. x” and “cos . x” suggests the notation still served as abbreviations for sinus and
cosinus, rather than as symbolic function names. Like us, Euler and his contemporaries
were intimately familiar with the infinite series representations for sin. x and cos . x,
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but generally employed infinite series with less than the modern regard for rigor. Thus,
as established in Section 123 of the Introductio, Euler could (and did) rewrite the ex-
pression (e* —e™") as

X x <1+x>" (1 x>" (X4 x? N x° el
e —e " = =) —(1—-=) = - etc. |,
i i 1 1.2.3 1:2:3.4.5

where i represented an infinitely large quantity (and not the square root of —1, de-
noted throughout the Introductio as ~/—1). Other results used by Euler are also fa-
miliarly unfamiliar to us, most notably the fact that a” — 7" has factors of the form
aa — 2az cos .2km /n + zz, as established in Section 151 of the Introductio.

Euler’s development of infinite product representations for sin. x and cos. x
in the Introductio begins in Section 156 by setting n =i, a =14+ x/i, and z =
I —x/i in the expression a" — z" (where, again, i is infinite, so, for example,
a" = (1 +x/i) = e*). After some algebra, the result of Section 151 cited above
allowed Euler to conclude that ¢* — ¢~ has factors of the form 2 — 2xx/ii —
2(1 — xx/ii) cos .2km/n. Substituting cos .2kw/n = 1 — (2kk/ii)mw (the first two
terms of the infinite series representation for cosine) into this latter expression and
doing a bit more algebra, Euler obtained the equation

2xx XX T dxx 4kk dkkmmxx
2+f—2(1—7>cos.2k—:—+ — )T - —.
i

i n ii ii it

Ergo (to quote Euler), ¢* — ¢ has factors of the form | 4+ xx/(kkmm) — xx/ii. Since
i is an infinitely large quantity, Euler’s arithmetic of infinite and infinitesimal numbers
allowed the last term to drop out. (Tuckey and McKenzie give a thorough discussion
of thesc ideas [17].) The end result of these calculations. as presented in Section 156,
thereby became

S I ) ()
—_— = — — —— ) etc.
2 \( T dn O 6

XX x* \©

23712345 1234567

+etc. (1)

|
+

A similar calculation (Section 157) derived the analogous series for (¢* + ¢ %) /2.
In Section 158, Euler employed these latter two results in the following manner.
Recalling the well-known fact (which he derived in Section 134) that

eVl (,:\/-—I ) ZS
——— =3sin.z2=2—
2/—1 1-2-3

Euler let x = z+/—1 in equation (1) above to get

sin .z = (175)(17—ZZ )(1— « )(17 < )etc
=L T drr O 16w '

(-2 0D (-5 () (e

The same substitution, applied to the series with even terms, yielded the now-familiar
product representation for cos.z.

Here we arrive at Euler’s apparent goal: the derivation of these lovely infinite prod-
uct representations for the sine and cosine. Although the expressions (e* +e*)/2 and

.
— etc.,
t1 2325 °°
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(e* — e™")/2 played a role in obtaining these results, it was a supporting role, with the
arrival of the hyperbolic functions on center stage yet to come.

Act ll, Scene I: Lambert’s first introduction of hyperbolic functions

Best remembered today for his proof of the irrationality of 7, and considered a fore-
runner in the development of noneuclidean geometries, Johann Heinrich Lambert was
born in Miilhasen, Alsace on August 26, 1728. The Lambert family had moved to
Miilhasen from Lorraine as Calvinist refugees in 1635. His father and grandfather were
both tailors. Because of the family’s impoverished circumstances (he was one of seven
children), Lambert left school at age 12 to assist the family financially. Working first
in his father’s tailor shop and later as a clerk and private secretary, Lambert accepted
a post as a private tutor in 1748 in the home of Reichsgraf Peter von Salis. As such,
he gained access to a good library that he used for self-improvement until he resigned
his postin 1759. Lambert led a largely peripatetic life over the next five years. He was
first proposed as a member of the Prussian Academy of Sciences in Berlin in 1761.
In January 1764, he was welcomed by the Swiss community of scholars, including
Euler, in residence in Berlin. According to Scriba [21], Lambert’s appointment to the
Academy was delayed due to “his strange appearance and behavior.” Eventually, he
received the patronage of Frederick the Great (who at first described him as “the great-
est blockhead”) and obtained a salaried position as a member of the physical sciences
section of the Academy on January 10, 1765. He remained in this position, regularly
presenting papers to each of its divisions, until his death in 1777 at the age of 49.

Lambert was a prolific writer, presenting over 150 papers to the Berlin Academy
in addition to other published and unpublished books and papers written in German,
French, and Latin. These included works on philosophy, logic, semantics, instrument
design, land surveying, and cartography, as well as mathematics, physics, and astron-
omy. His interests appeared at times to shift almost randomly from one topic to an-
other, and often fell outside the mainstream of 18th-century science and mathematics.
We leave itto the reader to decide whether his development of the hyperbolic functions
is a case in point, or an exception to this tendency.

Lambert first treated hyperbolic trigonometric functions in a paper presented to
the Berlin Academy of Science in 1761 that quickly became famous: Mémoire sur
quelques propriétés remarquables des quantités transcendantes circulaires et loga-
rithmiges [14]. Rather than its consideration of hyperbolic functions, this paper was
(and is) celebrated for giving the first proof of the irrationality of 7. Lambert estab-
lished this long-awaited result using continued fractions representations to show that z
and tan z cannot both be rational; thus, since tan(sr /4) is rational, 7 can not be.

Instead of concluding the paper at this rather climatic point, Lambert turned his
attention in the last third of the paper to a comparison of the “transcendantes cir-
culaire” [sinv, cos v,] with their analogues, the “quantités transcendantes logarith-
miques” [(e” + e7")/2, (e’ — e~ ")/2]. Beginning in Section 73, he first noted that the
transcendental logarithmic quantities can be obtained from the transcendental circular
quantities by taking all the signs in

1
v
2-3

to be positive, thereby obtaining

1 s 1
S —
2.3.4.5 2.3.4.5.6-7

sinv=v — Py v’ + etc.

el —e? 1 s 1 s 1
_— v v
2 2-3 2-3-4.5 2-3-4.5-6-17

v’ + etc.,
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and similarly for the cosine series. He then derived continued fraction representa-
tions (in Section 74) for the expressions (e’ — e™")/2, (e’ +e¢7")/2, and (e’ — e~ ")/
(e’ 4+ e7"), and noted that these continued fraction representations can be used to show
that v and e’ cannot both be rational. The fact that none of its powers or roots are ratio-
nal prompted Lambert to speculate that e satisfied no algebraic equation with rational
coefficients, and hence is transcendental. Charles Hermite (1822—-1901) finally proved
this fact in 1873. (Ferdinand Lindemann (1852-1939) established the transcendence
of 7 in 1882.)

Although Lambert did not introduce special notation for his “quantités transcen-
dantes logarithmiques™ in this paper, he did go on to develop the analogy between
these functions and the circular trigonometric functions that he said “should exist”
because

... the expressions e +e7“, e — e, by substituting u = v+/—1, give the cir-
cular quantities evV=1 +e Wl =2cosv, eV ! — e VT = 2sinv- V=1

Lambert was especially interested in developing this “affinity” as far as possible
without introducing imaginary quantities. To do this he introduced (in Section 75) a
parameterization of an “equilateral hyperbola” (x> — y> = 1) to define the hyperbolic
functions in a manner directly analogous to the definition of trigonometric functions
by means of a unit circle (x> + y* = 1). Lambert’s parameter is twice the area of the
hyperbolic sector shown in FIGURE 3. Lambert used the letter M to denote a typical
point on the hyperbola, with coordinates (&, ).

c A

Figure 3 The parameter u represents twice the area of the shaded sector MCA

In Lambert’s own diagram (FIGURE 4), the circle and the hyperbola are drawn to-
gether. The letter C marks the common center of the circle and the hyperbola, CA is
the radius of the circle, CF the asymptote of the hyperbola, and AB the tangent line
common to the circle and the hyperbola. The typical point on the hyperbola corre-
sponds to a point N on the circle, with coordinates (x, y). Lowercase letters m and n
mark nearby points on the hyperbola and circle, for use in differential computations.

Denoting the angle MCA by ¢, Lambert listed several differential properties for
quantities defined within this diagram, using a two-columned table intended to display
the similarities between the “logarithmiques” and “circulaires” functions. The first
seven lines of this table, reproduced below, defined the necessary variables and stated
basic algebraic and trigonometric relations between them. Note especially the third
line of this table, where u/2 (which Lambert denoted as u : 2) is defined to be the area
of the hyperbolic “segment” AMCA.
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Figure 4 Diagram from Lambert’s 1761 Mémoire

pour I’hyperbole pour le cercle
l’abscisse CP=E&... ..CO=x
l'ordonné PM=n... ...ON=y
le segment AMCA=u:2... ...ANCA=v:2
et il sera
tang(j):g... ...tang$ =2
l+nnp=§& =nncotp?... |...1 —yy=xx=yycotg?
EE—l=np==EEtangd® ... |...1 —xx = yy = xx tang ¢*
CM2 — gZ + nZ CN2 = x2 +),2
= £2(1 + tang ¢?) = HEEE | = (1 + tang ¢?) = FUL —

Using these relations, it is a straightforward exercise to derive expressions for the
differentials d&€, dn, dx, and dy (as a step toward finding infinite series expressions for
& and 7). For example, given £ — 1 = nn = £& tang ¢* (tang would be tan in modern
notation), it follows that & = 1/,/1 — tang ¢>. Lambert noted this fact, along with the
differential d§ = tang ¢ d tang ¢/ (1 — tang ¢)*? obtained from it, later in the table.

To see how differential expressions for du and dv might be obtained, note that u
is defined to be twice the area of the hyperbolic sector AMCA. The differential du
thus represents twice the area of the hyperbolic sector MCm. This differential sec-
tor can be approximated by the area of a circular sector of radius CM and angle d ¢;
that is, du = 2[CM?d $/2]. Substituting CM? = (1 + tang ¢?)/(1 — tang ¢*) from the
table above then yields du = d¢ - CM* = d¢ - (1 + tang $2)/(1 — tang ¢?), where
de - (1 + tang ¢?) = d(tang ¢). Thus, du = d tang ¢ /(1 — tang ¢?). Although Lam-
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bert omitted the details of these derivations, his table summarized them as shown be-
low.

pour ’hyperbole pour le cercle

_ 1 +tang ¢2 _ __ dtang¢
+du=d¢- (]—tangtpz) dv =d¢ = 1+tang ¢2

_ dtang¢

~ I—tang¢?

__ tang¢dtang¢ _ __ tange¢d tang ¢
+ d%‘ - (litang¢2)3:2 d'x - (|+[ang¢2)3:2

_ d tang ¢ L dtang ¢
+ dr, - (l—lang¢2)332 + d-) - (|+[a"g¢2)3:2
+dé:du=n... ..—dx:dv=y
+dn:du=E€... co.t+dy:idv=x
+d§ =dn-tangp... |...—dx :dy =tang¢p

Using the relations + d§ : du = n, + dn : du = & from this table, along with stan-
dard techniques of the era for determining the coefficients of infinite series, Lambert
then proved (Section 77) that the following relations hold:

| | s 1 7
_ B O H tc.
n u+2.3u +2'3_4.5u+2'3'4.5.6.7u+ec

é—u—}-lu2+ : ut + : u® + ete
N 2 2.3.4 2.3.4.5.6 N
where we recall that & is the abscissa of a point on the hyperbola, 7 is the ordinate of
that same point, and u represents twice the area of the hyperbolic segment determined
by that point. But these are exactly the infinite series for (¢ — e™)/2and (¢ + e¢7")/2
with which Lambert began his discussion of the “quantités transcendantes logarith-
miques.”

Lambert was thus able to conclude (Section 78) that & = (e —¢e")/2 and n =
(e" —e™")/2 are, respectively, the abscissa and ordinate of a point on the hyperbola
for which u represents twice the area of the hyperbolic segment determined by that
point.

A derivation of this result employing integration, as outlined in some modern cal-
culus texts, is another nice problem for students. Contrary to the suggestion of some
texts, it is this parameterization of the hyperbola by the hyperbolic sine and cosine, and
the analogous parameterization of the circle by the circular sine and cosine, that seems
to have motivated Lambert and others eventually to provide the hyperbolic functions
with trig-like names—not the similarity of their analytic identities. This is not to say
that the similarities between the circular identities and the hyperbolic identities were
without merit in Lambert’s eyes—we shall see that Lambert and others exploited these
similarities for various purposes. But Lambert’s immediate interest in his 1761 paper
lay elsewhere, as we shall examine more closely in the following section.

Interlude: Giving credit where credit is due

As Lambert himself remarked at several points in his 1761 Mémoire, he was especially
interested in developing the analogy between the two classes of functions (circular
versus hyperbolic) as far as possible without the use of imaginary quantities, and it is
the geometric representation (that is, the parameterization) that provides him a means



24 MATHEMATICS MAGAZINE

to this end. Lambert ascribed his own interest in this theme to the work of another
18th-century mathematician whose name is less well known, Monsieur le Chevalier
Frangois Daviet de Foncenex.

As a student at the Royal Artillery School of Turin, de Foncenex studied math-
ematics under a young Lagrange. As recounted by Delambre, the friendships La-
grange formed with de Foncenex and other students led to the formation of the Royal
Academy of Science of Turin [7]. A major goal of the society was the publication
of mathematical and scientific papers in their Miscellanea Taurinensia, or Mélanges
de Turin. Both Lagrange and de Foncenex published several papers in early volumes
of the Miscellanea, with de Foncenex crediting Lagrange for much of the inspiration
behind his own work. Delambre argued that Lagrange provided de Foncenex with far
more than inspiration, and it is true that de Foncenex’s analytic style is strongly remi-
niscent of Lagrange. It is also true that de Foncenex did not live up to the mathematical
promise demonstrated in his early work, although he was perhaps sidetracked from a
mathematical career after being named head of the navy by the King of Sardinia as a
result of his early successes in the Miscellanea.

In his earliest paper, Reflexions sur les Quantités Imaginaire [7], de Foncenex fo-
cused his attention on “the nature of imaginary roots” within the debate concerning
logarithms of negative quantities. In particular, de Foncenex wished to reconcile Eu-
ler’s “incontestable calculations” proving that negative numbers have imaginary log-
arithms with an argument from Bernoulli that opposed this conclusion on grounds
involving the continuity of the hyperbola (whose quadrature defines logarithms) at in-
finity. The analysis that de Foncenex developed of this problem led him o consider
the relation between the circle and the equilateral hyperbola—exactly the same anal-
ogy pursued by Lambert.

In his 1761 Mémoire, Lambert fully credited de Foncenex with having shown how
the affinity between the circular trigonometric functions and the hyperbolic trigono-
metric functions can be “seen in a very simple and direct fashion by comparing the
circle and the equilateral hyperbola with the same center and same diameter.” De
Foncenex himself went no further in exploring “this affinity” than to conclude that,
since v/x% — r2 = /—14/r2 — x2, “the circular sectors and hyperbolic [sectors] that
correspond to the same abscissa are always in the ratio of 1 to /=12 1t is this use of
an imaginary ratio to pass from the circle to the hyperbola Lambert seemed intent on
avoiding.

Lambert returned to this theme one final time in Section 88 of the Mémoire. In
another classic example of 18th-century analysis, Lambert first remarked that “one
can easily find by using the differential formulas of Section 75,” that

] 1 1
v =tang ¢ — gtang » + 5 tang ¢’ — 7 tang ¢’ + etc.

tang ¢ . + 2 5 17 tet

angp =u— -u +—u — — etc.
& 3T T 315"

“By substituting the value of the second of these series into the first ... and recipro-

cally” (but again with details omitted), Lambert obtained the following two series:

2, 24 244

v=u—zu +3u 5" + etc (2)
TS B e Y,

= - - — elC.

u v 31) 31) 3151)

where (switching from previous usage) u equals twice the area of the circular sector
and v equals twice the area of the hyperbolic sector. Finally, Lambert obtained the
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sought-after relation by noting that substitution of u = v+/—1 into series (2) will yield
v=u/-1.

In (semi)-modern notation, we can represent Lambert’s results as tanh(v/—1) =
tan(u+/—1) and tanh(x) = tan(v). Having thus established that imaginary hyperbolic
sectors correspond to imaginary circular sectors, and similarly for real sectors, Lam-
bert closed his 1761 Mémoire. The next scene examines how he later pursued a new
plot line suggested by this analogy: the use of hyperbolic functions to replace circular
functions in the solution of certain problems.

Act ll, Scene II: The reappearance of hyperbolic functions in Lambert

Lambert returned to the development of his “transcendental logarithmic functions”
and their similarities to circular trigonometric functions in his 1768 paper Ob-
servations trigonometriques [15]. In this treatment, a typical point on the hyper-
bola is called ¢. Letting ¢ denote the angle ¢CQ in FIGURE 5, Lambert first re-
marked that tang¢p = MN/MC = gp/pC. Because MN/MC = sin¢/cos¢ and
qgp/ pC = sinhyp ¢/ cos hyp ¢, one has the option of using either the circular tangent
function or the hyperbolic tangent functions for the purpose of analyzing triangle ¢gCP.
Note that the notation and terminology used here are Lambert’s own! Lambert himself
commented that, in view of the analogous parameterizations that are possible for the
circle and the hyperbola, there is “nothing repugnant to the original meaning” of the
terms “sine” and “cosine” in the use of the terms “hyperbolic sine” and “hyperbolic
cosine” to denote the abscissa and ordinate of the hyperbola. Although Lambert’s
notation for these functions differed from our current convention, the hyperbolic func-
tions had now become fully-fledged players in their own right, complete with names
and notation suggestive of their relation to the circular trigonometric functions.

C RMQ p B

Figure 5 Diagram from Lambert's Observations trigonometriques [15]

The development of the hyperbolic functions in this paper included an extensive
list of sum, difference, and multi-angle identities that are, as Lambert remarked, eas-
ily derived from the formulas sinhypv = (e” + e7")/2, coshypv = (e’ —e™") /2. Of
greater importance to Lambert’s immediate purpose was the table of values he con-
structed for certain functions of “the transcendental angle w.” In particular, the tran-
scendental angle o, defined as angle PCQ in FIGURE 5 and related to the common
angle ¢ via the relation sin w = tang ¢ = tang hyp ¢, served Lambert as a means to
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pass from circular functions to hyperbolic functions. (The transcendental angle as-
sociated with ¢ is also known as the hyperbolic amplitude of ¢ after Hoiiel and the
longitude after Guderman.) For values of w ranging from 1° to 90° in increments of 1
degree, Lambert’s table included values of the hyperbolic sector, the hyperbolic sine
and its logarithm, the hyperbolic cosine and its logarithm, as well as the tangent of
the corresponding common angle and its logarithm. By replacing circular functions
by hyperbolic functions, Lambert used these functions to simplify the computations
required to determine the angle measures and the side lengths of certain triangles.

The triangles that Lambert was interested in analyzing with the aid of the hyper-
bolic functions arise from problems in astronomy in which one of the celestial bodies
is below the horizon. It has since been noted that such problems can be solved using
formulae from spherical trigonometry with arcs that are pure imaginaries. This is an
intriguing observation since elsewhere (in his work on noneuclidean geometry), Lam-
bert speculated on the idea that a sphere of imaginary radius might reflect the geometry
of “the acute angle hypothesis.” The acute angle hypothesis is one of three possibil-
ities for the two (remaining) similar angles «, B of a quadrilateral assumed to have
two right angles and two congruent sides: (1) angles «, § are right; (2) angles «, 8
are obtuse; and (3) angles «, 8 are acute. Girolamo Saccheri (1667-1733) introduced
this quadrilateral in his Euclides ab omi naevo vindiactus of 1733 as an element of his
efforts to prove Euclid’s Fifth Postulate by contradiction. Both Saccheri and Lambert
believed they could dispense with the obtuse angle hypothesis. Lambert’s speculation
about the acute angle hypothesis was the result of his inability to reject the acute angle
hypothesis.

It is worth emphasizing, however, that Lambert himself never put an imaginary ra-
dius into the formulae of spherical trigonometry in any of his published works. The
triangles he treated are real triangles with real-valued arcs and real-valued sides. As
noted by historian Jeremy Gray [9, pp. 156-158], the ability to articulate clearly the
notion of “geometry on a sphere of imaginary radius” was not yet within the grasp of
mathematicians in the age of Euler. Gray argues convincingly that the development of
analysis by Euler, Lambert, and other 18th-century mathematicians was, nevertheless,
critical for the 19th-century breakthroughs in the study of noneuclidean geometry. By
providing a language flexible enough to discuss geometry in terms other than those set
forth by Euclid, analytic formulae allowed for a reformulation of the problem and the
recognition that a new geometry for space was possible. Although rarely mentioned in
today’s calculus texts, the explicit connection eventually made by Beltrami in his 1868
paper, linking the hyperbolic functions to the noneuclidean geometry of an imaginary
sphere, is yet another intriguing use for hyperbolic functions that is surely as tantaliz-
ing as the oft-cited catenary curve.

Flashback: Hyperbolic functions in Riccati Although Lambert’s primary reason
for considering hyperbolic functions in 1768 was to simplify calculations involved
in solving triangles, Lambert clearly realized that there was no need to define new
functions for this purpose; tables of logarithms of appropriate trigonometric values
could instead be used to serve the same end. But, he argued, this was only one possible
use for the hyperbolic trigonometric functions in mathematics. The only example he
cited in this regard was the simplification of solution methods for equations. Lambert
did not elaborate on this idea beyond noting that the equation 0 = x> — 2a cos w - x +
a® is equivalent to the equation 0 = x> — 2acoshypys - x + a* for an appropriately
defined angle . He did, however, cite an investigation of this idea that had already
appeared in the work of another 18th-century mathematician: Vincenzo de Riccati.
Vincenzo de Riccati was born on January 11, 1707, the second son of Jacopo Riccati
for whom the Riccati equation in differential equations is named. Riccati (the son)
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received his early education at home and from the Jesuits. He entered the Jesuit order
in 1726 and taught or studied in various locations, including Piacenza, Padua, Parma,
and Rome. In 1739, Riccati moved to Bologna, where he taught mathematics in the
College of San Francesco Saverio until Pope Clement XIV suppressed the Society of
Jesus in 1773. Riccati then returned to his family home in Treviso, where he died on
January 17, 1775.

Riccati first treated hyperbolic functions in his two-volume Opuscula ad res phys-
icas et mathematicas pertinentium (1757-1762) [19]. In this work, Riccati employed
a hyperbola to define functions that he referred to as “sinus hyperbolico” and “cosi-
nus hyperbolico,” doing so in a manner analogous to the use of a circle to define the
functions “sinus circulare” and “cosinus circulare.” Taking u to be the quantity given
by twice the area of the sector ACF divided by the length of the segment CA (whether
in the circle or the hyperbola of FIGURE 6), Ricatti defined the sine and cosine of the
quantity u to be the segments GF and CG of the appropriate diagram. Although Ricatti
did not explicitly assume either a unit circle or an equilaterial hyperbola, his defini-
tions are equivalent to that of Lambert (and our own) in that case. In Opusculum IV
of Volume I, Ricatti derived several identities of his hyperbolic sine and cosine, apply-
ing these to the problem of determining roots of certain equations, especially cubics.
Riccati also determined the series representations for the sinus and cosinus hyperbol-
icos. These latter results, which appeared in Opusculum VI in volume I, were earlier
communicated by Riccati to Josepho Suzzio in a letter dated 1752.
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Figure 6 Diagrams rendered from Riccati's Opuscula

In Riccati’s Institutiones analyticae (1765-1767) [20], written collaboratively with
Girolamo Saldini, he further developed the theory of the hyperbolic functions, includ-
ing the standard addition formulas and other identities for hyperbolic functions, their
derivatives and their relation to the exponential function (already implicit in his Opus-
cula).

Reprise: Giving credit where creditis due While some of the ideas in Riccati’s In-
stitutiones of 1765-1767 also appeared in Lambert’s 1761 Mémoire, this author knows
of no evidence to suggest that Riccati was building on Lambert’s work. The publication
dates of his earlier work suggest that Riccati was familiar with the analogy between
the circular and the hyperbolic functions some time earlier than Lambert came across
the idea, and certainly no later. Conversely, even though Riccati’s earliest work was
published several years before Lambert’s 1761 Mémoire, it appears that Lambert was
unfamiliar with Riccati’s work at that time. Certainly, the motivations of the two for
introducing the hyperbolic functions appear to have been quite different. Furthermore,
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Lambert appears to have been scrupulous in giving credit to colleagues when drawing
on their work, as in the case of de Foncenex. In fact, Lambert credited Ricatti with
developing the terminology “hyperbolic sine” and “hyperbolic cosine” when he used
these names for the first time in his 1768 Observations trigonometriques. It thus ap-
pears that it was only these new names—and perhaps the idea of using these functions
to solve equations—that Lambert took from Riccati’s work, finding them to be suit-
able nomenclature for mathematical characters whom he had already developed within
a story line of his own creation.

Despite the apparent independence of their work, the fact remains that Riccati did
have priority in publication. Why then is Lambert’s name almost universally men-
tioned in this context, with Riccati receiving little or no mention? Histories of mathe-
matics written in the 19th and early 20th centuries suggest this tendency to overlook
Riccati’s work is a relatively recent phenomenon. Von Braunmiihl [22, pp. 133-134],
for example, has the following to say in his 1903 history of trigonometry:

In fact, Gregory St. Vincent, David Gregory and Craig through the quadrature of
the equilateral hyperbola, erected the foundations [for the hyperbolic functions],
even if unaware of the fact, Newton touched on the parallels between the circle
and the equilateral hyperbola, and de Moivre seemed to have some understanding
that, by substituting the real for the imaginary, the role of the circle is replaced
by the equilateral hyperbola. Using geometric considerations, Vincenzo Riccati
(1707-1775) was the first to found the theory of hyperbolic functions, as was
recognized by Lambert himself. (Author’s translation.)

Although the amount of recognition that Lambert afforded Riccati may be overesti-
mated here, it is interesting that von Braunmiihl then proceeded to discuss Lambert’s
work on hyperbolic functions in detail, with no further mention of Riccati, remarking
that:

This [hyperbolic function] theory is only of interest to us in so far as it came
into use in the treatment of trigonometric problems, as was first opened up by
Lambert. (Author’s translation.)

It would thus appear that the motivation Lambert assigned to the hyperbolic func-
tions was more central to mathematical interests as they evolved thereafter, even
though his interests often fell outside the mainstream of his own century. The fact
that Lambert’s mathematical works, especially those on noneuclidean geometry, were
studied by his immediate mathematical successors offers support for this idea, as does
the wider availability of Lambert’s works today. Besides being more widely available,
Lambert’s work is written in notation—and languages!—that are more familiar to
today’s scholars than that of Riccati. This alone makes it easier to tell Lambert’s story
in more detail, just as we have done here.

Epilogue

And what of the physical applications for which the hyperbolic functions are so useful?
Although neither Lambert nor Riccati appear to have studied these connections, they
were known by the late 19th century, as evidenced by the publication of hyperbolic
function tables and manuals for engineers in that period. Yet even as late as 1849, we
hear Augustus De Morgan [3, p. 66], declare:
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The system of trigonometry, from the moment that /—1 is introduced, always
presents an incomplete and one-sided appearance, unless the student have in his
mind for comparison (though it is rarely or never wanted for what is called use),
another system [hyperbolic trigonometry] in which the there-called sines and
cosines are real algebraic quantities. (Emphasis added.)

While De Morgan’s perspective offers yet another intriguing reason to study hy-
perbolic trigonometry, usefulness in solving problems (mathematical or physical) did
not appear to concern him. This delay between the development of the mathematical
machinery and its application to physical problems serves as a gentle reminder that the
physical applications we sometimes cite as the raison d’étre for a mathematical idea
may only become visible with hindsight. Yet even Riccati’s and Lambert’s own uses
for hyperbolic trigonometry went unacknowledged by De Morgan—an even stronger
reminder of how quickly mathematics changed in the 19th century, and how greatly
today’s mathematics classroom might be enriched by remembering the mathematics
of the age of Euler.
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Cauchy-Schwarz Inequality
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Simpson Symmetrized and Surpassed
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Simpson’s rule is a well-known numerical method for approximating definite integrals.
It is named after Thomas Simpson, who published itin 1743, although it was known
already more than a century before that. Bonaventura Cavalieri gave a geometric ver-
sion of Simpson’s rule in 1639, and James Gregory published the rule in 1668. Others
who published not only Simpson’s rule but also more general formulas before Simp-
son’s publication in 1743 include Isaac Newton, Roger Cotes, and James Stirling [4,
p. 77].

Many calculus textbooks state Simpson’s rule in its composite form, which says
that

b 1 4 2 4
/ f(x)dx ~ Ax [gf(xo) + gf(xl) + gf(xz) + gf(x3) 4+

2 4 ]
+ gf(xn—’_’) + gf(xn—l) + gf(xn) )

where 1 is a positive even integer, Ax = (b —a)/n,and x; = a +iAx forO) <i < n.

Simpson’s rule is surprisingly accurate. For example, although it is based on ap-
proximating the function f on various intervals with quadratic polynomials, it is ex-
actly correct even if f is a cubic polynomial. However, the asymmetric treatment of
the even- and odd-numbered sample points that results from the alternation of the co-
efficients 4/3 and 2/3 seems counterintuitive. The sample points are evenly spaced be-
tween a and b, so once one gets away from the endpoints of the interval, every sample
point looks very much like every other one. Why should adjacent sample points be
treated so differently? Others have raised the same issue before. For example, Roger
Pinkham [8, p. 92] argues that *“... the function evaluations in the middle of the inter-
val are on an equal footing. One feels that they should be treated evenhandedly.”

In this paper I will show that symmetrizing the treatment of even- and odd-
numbered sample points in Simpson’s rule can lead to more accurate approximate
integration formulas. These formulas will still be based on approximating f on inter-
vals with quadratic polynomials, and they will still be exact for cubic polynomials.
However, the error bounds will be smaller than the error bound for Simpson’s rule,
and all coefficients except for a few at the beginning and end will be equal to 1.

It is not my intention in this paper to study numerical integration in general. Rather,
I will focus on the limited topic of Simpson-like numerical integration rules that are
based on quadratic approximation. My question is not whether Simpson’s rule is the
best way to approximate definite integrals, but rather whether Simpson’s rule, with its
asymmetric treatment of even- and odd-numbered sample points, is the best way to
employ quadratic approximations in numerical integration.

A first attempt

It will be helpful to begin by reviewing briefly the derivation of Simpson’s rule for
approximating f‘ b f(x)dx. The first step of this derivation is to divide the interval
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[a, b] into n equal subintervals of width Ax = (b — a)/n, for some positive even in-
teger n. The dividing points are x; = a + i Ax, for 0 < i < n. For each even integer i,
0 <i <n —2,we then approximate f on the interval [x;, x;;,] with a quadratic poly-

nomial g suchthatq(x;) = f(x;), g(xi+1) = f(xiy1), and g(x;;2) = f(xi42). Itis not
hard to show that there is exactly one such polynomial g, and it is given by the formula

g(x) = A(x — x;11)* + B(x — x;11) + C, (1)

where

fxivn) =2f (xip) + f ()
2Ax?

f(xig2) — f(x)
2Ax

A= s B =

, C = f(xiy1).

Finally, we approximate the integral of f over the interval [x;, x;;,] with the integral
of g over the same interval, which we evaluate using the substitution u = x — x;;;:

Xi42 Xiy2 Ax
f(x)dx%/ q(x)dx:/ Au®? + Bu + Cdu

Xj i Ax
_A 1 4 1 )
= Ax l:gf(xi)+§f(xi+l)+gf(xi+2):|- (2)

(See FIGURE 1.) Summing these approximations yields Simpson’s rule.

X Xiel  Xig2

Figure 1 Approximating ["*? f(x) dx

We define the error in any approximation of the integral of f on an interval to be
the exact value of the integral minus the approximation; thus, the error is positive if the
approximation is too small, and negative if it is too large. It is clear from the derivation
that Simpson’s rule is exactly correct if f is a quadratic polynomial. Surprisingly, it
is also exactly correct for cubics. To understand why, it is helpful to break the basic
Simpson’s rule approximation (2) into left and right halves. With g chosen as before,
it is easy to compute that

i+ 5 2 I
/x g(x)dx = Ax l:ﬁf(xi) + gf(xi+1) - Ef(xi+2):| 3)

i

and
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42 1 2 5
/ qg(x)dx = Ax [—Tzf(xi)+§f(xi+|)+Ef(Xm)]- 4

Xi+1

Notice that these formulas sum to the formula in (2).

Now consider any cubic polynomial f(x) = a3x® + a,x? + a;x + ay. Let h(x) =
asz(x — x;)(x — x;31)(x — x;12). Then it is not hard to see that f — h is a quadratic
polynomial, and it agrees with f at x;, x;11, and x;4,, so it must be the function g in
equations (2)—(4). It follows that the error in using the integral of g to approximate the
integral of f on any interval can be found by integrating f — g = /4 on that interval.
It is now clear from the symmetry of FIGURE 2 that the errors in using (3) and (4)
to approximate the integrals of f on the intervals [x;, x;1;] and [x;4, x;;,] are equal
in magnitude but have opposite sign. Indeed, it is straightforward to calculate that
these errors are a3 Ax*/4. These errors therefore cancel each other out, making the
basic Simpson’s rule approximation (2) exactly correct for f. (Kenneth Supowit uses
a similar approach to prove a generalization of this fact to all Newton-Cotes formulas
of even degree [9].)

X it \/«"142

Figure 2 The graph of y = h(x) = f(x) — g(x) when f is a cubic polynomial

In fact, even if f is not a cubic polynomial, it is often the case that the errors in
the left and right halves of the approximation (2) cancel to some extent, although not
exactly. For example, such cancellation can be seen in FIGURE I. Intuitively, this
cancellation helps to explain the high degree of accuracy of Simpson’s rule.

The derivation of Simpson’s rule shows that the source of the asymmetry in the co-
efficients of the even- and odd-numbered sample points is the fact that the basic Simp-
son’s rule approximation (2) is used to approximate j;:f‘” f(x)dx only for even i.
This observation suggests a simple approach to symmetrizing Simpson’s rule that was
proposed by G. O. Peters and C. E. Maley [6]. Their idea is to apply (2) for every i
between 0 and n — 2, rather than just for even /. The intervals used in these approxima-
tions overlap and cover the interval [a, b] twice, except for the intervals [xg, x;] and
[x._1, x,], which are covered only once. Thus, summing these approximations, and
then adding an additional approximation of the integral of f on each of the intervals
[x0, x;] and [x,_;, x,,], yields an approximation of twice the desired integral. Peters
and Maley use (3), the left half of the basic Simpson’s rule approximation, for the ad-
ditional approximation of the integral on [xy, x,], and the right half (4) for [x,_,, x,].
Finally, dividing the sum of all of these approximations by two yields the following
symmetrized version of Simpson’s rule:

b 3 7 23
/ f(x)dx ~ Ax ':gf(xo) + gf(xl) + “zzf(xz) + )+ flxg) + -

23 7 3
+ f(-xn—3) + ﬂf(-xn~2) + Ef(-xn—l) + gf(xn) .



34 MATHEMATICS MAGAZINE

As G. M. Phillips has observed [7], Peters and Maley’s formula is the same as
Gregory’s rule of order two, also sometimes called the Lacroix rule. Gregory’s rules
are usually derived by a different method, involving the use of the Euler-Maclaurin
summation formula to determine correction terms that are added to the trapezoid rule.
J. M. De Villiers has also given a derivation of the Lacroix rule using quadratic ap-
proximation [3].

As promised, all coefficients in this symmetrized version of Simpson’s rule except
for a few at the beginning and end are equal to 1. The symmetrized rule is also exactly
correct for cubic polynomials, since it consists of equal numbers of left and right halves
of the basic Simpson’s rule approximation, and the errors in these approximations
cancel out for cubic polynomials. And it has the modest advantage that it can also be
used if n is odd.

Unfortunately, this symmetrized Simpson’s rule also has a serious disadvantage: Its
error bound is larger than the error bound for Simpson’s rule! If f is continuous on
[a, b], and f@(x) is defined and | f*(x)| < M forall x € (a, b), then the magnitude
of the error in Simpson’s rule is at most

nAx’ (b — a)’
M= ——-
180 180n*

&)

(We will see the derivation of this shortly.) But it turns out that the magnitude of the
error in Peters and Maley’s symmetrized rule can be as large as

(l9n 1) s (19 15) (b—a)

— ——)AaM=—-—=) ——M

720 24 4 2n 180n*

In particular, this is the magnitude of the error in the case of the function f(x) = x*.
For large n, this error is approximately 19/4 times the error in Simpson’s rule. (Peters
and Maley do not provide an estimate of the error in their approximation. The Mathe-
matical Reviews entry for their paper (MR 38 #4032) does provide an error estimate,
but it is incorrect.)

Roger Pinkham takes a similar approach to symmetrizing Simpson’s rule [8], al-
though he deals with the intervals [xy, x,] and [x,_,, x,] differently. Pinkham’s approx-
imation is more accurate than Peters and Maley’s, but this improvement comes at the
price of using an additional sample point in each of the intervals [xo, x1] and [x,_1, x,].
When compared to Simpson’s rule with the same number of sample points, Pinkham’s
rule is slightly less accurate, although the relative difference is small for large n. Thus,
the rules given by Peters, Maley, and Pinkham are Simpson symmetrized, but not yet
Simpson surpassed.

A better way

Why is Simpson’s rule so accurate? It will turn out that an examination of the proof
of the error bound (5) for Simpson’s rule will lead us to a symmetrized version of
Simpson’s rule with a lower error bound. We will follow Apostol’s proof [1, pp. 605—
609].

Assume that f is continuous on [a, b], and that £ (x) is defined and | f ¥ (x)| < M
for all x € (a, b). To prove the error bound (5), we begin by considering the basic
Simpson’s rule approximation (2) for 7> f(x) dx. It is not hard to show that there is
a cubic polynomial g such that g(x;) = f(x;), g(xi41) = f(xi11), g(xis2) = f(Xiz2),
and g'(x;4+1) = f'(x;4+1). Since g is a cubic polynomial, Simpson’s rule is exact for g,
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and therefore

42 1 4 1
/ gx)dx = Ax gg(xi) + gg(xH-l) + gg(xwz)

1 4 1
= Ax |:§f(x,-) + gf(xi-H) + gf(xi+2):| .

It follows that the magnitude of the error in the approximation (2) is

Xi+2

F)dx - f T e dx

Xi i

< / T — g0 dx. ()

Thus, to estimate the error in (2), we must investigate the size of | f(x) — g(x)].
Notice that the function f — g takes on the value O at x;, x; |, and x,,, and further-
more its derivative is also 0 at x;;,. Perhaps the simplest function with these properties
is the function w defined as follows:
wx) = (x —x)(x = x;41)°(x — Xi42).

One might hope that there is some relationship between the functions f — g and w,
and it turns out that there is:

LEMMA. Forevery x € [x;, x;;»] there is some ¢, € (x;, X;;) such that

[
4!

f(x)—glx) = w(x). (7

Sketch of proof: The lemma clearly holds for x = x;, x = x;;,, and x = x;,2,
since in these cases both sides of (7) are 0. For other values of x, the proof involves
applying Rolle’s theorem repeatedly to the function h(t) = w(x)(f(t) — g(t)) —
w(t)(f(x) — g(x)). For details, see Apostol [1, p. 608, equation (15.42)]. [ |

Since |f¥(c)| < M for all ¢ € (x;,x,4,), the lemma implies that for all x €
[xl' ) xi+2]9

=<

|f(x) = g)] < = |wx)].

!

~

Thus, by (6), the error in (2) is at most

Yit2 M [Fi+2
f lf(x)—g(x)ldxsh—, lw(x)|dx. (8)

Xi

To complete the calculation of the error bound, we observe that w(x) < 0 on
[x;, xi42], so |[w(x)| = —w(x) on this interval, and then we integrate using the substi-
tution # = x — x;,:

Xiy2 Xi42 Ax AAXS
/ |w(x)[dx = / —w(x)dx = f wrAx? —utdu = 15x .
X Xi —Ax

Plugging this into (8), we find that the magnitude of the error in the basic Simpson’s
rule approximation (2) is at most
M 4AX°  AX
415 90

)
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Since Simpson’s rule is a sum of n/2 of these basic approximations, the total error
in Simpson’s rule is at most n/2 times the error bound (9), which gives us the error
bound (5).

This proof shows that the size of the error bound for Simpson’s rule is determined
by the integral of the function |w(x)|. FIGURE 3 shows the graph of w, and what is
most striking in this graph is that, because of the double root at x;.;, the value of
|w(x)| is fairly small for x near the middle of the interval [x;, x;,,], with the largest
values occurring close to the endpoints of the interval. It appears that, in some sense,
most of the error in (2) comes from the beginning and end of the interval, with less
error coming from near the middle. We might say that the middle of the interval is the
“sweet spot” of the approximation (2). This observation will be the motivation for our
improvements on Simpson’s rule. In our new approximations of fa b S (x)dx, we will
continue to fit quadratic polynomials to f on intervals of width 2Ax, but we will only
integrate these quadratic polynomials over the middle half of each interval.

Xi Xit+1 Xi+2

Figure 3 The graph of y = w(x)

As before, in order to approximate fab f(x)dx, we begin by dividing the interval
[a, b] into n equal subintervals of width Ax = (b —a)/n, at points x; = a + i Ax,
0 <i < n. (There will be no need to assume that n is even for this approxima-
tion.) It will be convenient to introduce the additional notation x;,, = (xo + x1)/2,
x32 = (x; +x2)/2, and so on. For each integer i, 0 < i < n — 2, we again find
the unique quadratic polynomial ¢ that agrees with f at x;, x; 41, and x;,,; the for-
mula for g(x) is given by (1). However, we only integrate f and g over the interval
[xi41/2, Xi43,2], again using the substitution ¥ = x — x;4; to evaluate the integral of g:

Xi+3/2 Xi43/2 Ax/2
/ f(x)dx%/ q(x)dx:/ Au®+ Bu+ Cdu

Xit1/2 Xi1/2 Ax/2
1 11 1
= Ax ézf(xi)+ﬁf(xi+1)+ézf(xi+2) . (10)

(See FIGURE 4.)

Before continuing, let us stop to see how accurate the approximation in (10) is. We
will assume, as before, that f is continuous on [a, b], and that f®(x) is defined and
| f®(x)| < M forall x € (a, b). Itis easy to verify, by an argument similar to the one
given earlier for Simpson’s rule, that (10) is exact if f is a cubic polynomial. As a
result, we can imitate our derivation of the error in Simpson’s rule. The only change is
that we only integrate over the middle half of the interval [x;, x;,], so we find that the
error in (10) is at most

M [Fi+32

m Iw(x)|dx.

Xi+1/2
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y =)

X /* Xixl \-m:
Xixl/2 Xik3/2
Figure 4 Approximating ["**? f(x) dx

i+1/2

Once again, we use the substitution ¥ = x — x; ;| to evaluate the integral of |w(x)| =
—w(x):

Xi43/2 Yig3)2 Ax/2 q 17Ax5
/ ‘w(x)| dx = / —wx)dx = / WAxr —utdu = .
Yit1/2 Yig1)2 —Ax/2 240

Thus, the magnitude of the errorin (10) is at most

M 17AX° _ 17AX° M
41 240 5760

(10

Notice that (10) approximates the integral of f on an interval only half as wide as
the interval in the basic Simpson’s rule approximation (2), but the bound (11) for the
error in (10) is just a little over one-fourth of the error bound (9) for (2). Thus, we have
achieved an improvement of almost a factor of two in our error bound.

Summing the approximations (10) for all integers i/, 0 <i < n — 2, we get the
approximation

Xn—-1/2 ] 23
/xl/z fx)dx ~ Ax [ﬂf(xo) + ﬁf(xl) + )+ flx) 4+

_ 3 1 "
+ f(-)‘an) + EZf(-an]) + Ezf(xn)} . ( )

Since (12) is the sum of n — 1 approximations, each of which has error bounded
by (11), the magnitude of the error in (12) is at most

17(n — 1)AX?

1
5760 (13)

Notice that, once again, we have a symmetrized rule. In the derivation of (12), even-
and odd-numbered sample points were treated the same way, with each of the points
X1, X2, ..., X,_ being used as the midpoint of a quadratic approximation. As a result,
all coefficients in (12) except for the first two and the last two are equal to 1. However,
we are not quite done, because (12) misses the intervals [xg, x| /2] and [x,_1,2, X,].
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We will consider several ways of modifying (12) to get an approximation for
fab f(x)dx. The first is simply to modify our choice of sample points so that (12) will

become an approximation for fab f(x)dx. Todo this, we let Ax = (b —a)/(n — 1),
xo =a — Ax/2, and x; = xo + iAx for 1 <i < n. Then it is easy to verify that
a = (xg+x1)/2 and b = (xn_1 + x,)/2, so using the new sample points in (12)
instead of the old ones we get

b 1 23
/a f(x)dx ~ Ax [ﬂf(%)*’ if(xl)+f(x2)+f(x3)+"‘

23 1
+ f(xn—Z) + 2_4f(-xn—l) + ﬁf(xn)] .

We will refer to this as the central Simpson’s rule, since it is based on using only
the central half of each basic Simpson’s rule approximation. By (13), the magnitude
of the error in this approximation is at most

M, (14)

17(n — 1)Ax5M 17(b — a)’ 17 ( n \* b-a)

5760 ©5760(n — D* T 32 \n— 1) 180n*
which is smaller than the error bound (5) for Simpson’s rule when n > 6. As n — oo,
the ratio of (14) to (5) approaches 17/32 = 0.53125, so for large n we have cut our
error almost in half.

In many situations, the central Simpson’s rule would be a significant improvement
over Simpson’s rule. However, the central Simpson’s rule also has a number of dis-
advantages. It requires the evaluation of f at points outside the interval [a, b], so it
cannot be used if f is undefined outside that interval. Furthermore, to justify the error
bound (14) we need to know that f is continuous on [xg, x,] = [a@ — Ax/2, b + Ax/2],
and that f® (x) is defined and | f ¥ (x)| < M for x € (xg, x,). If, for example, £ (x)
grows very quickly just outside the interval [a, b], then the value of M in (14) may be
larger than the value of M in (5), and therefore our error bound for the central Simp-
son’s rule may be larger than the error bound for Simpson’s rule. It is therefore of
interest to investigate other symmetrized versions of Simpson’s rule that do not have
these disadvantages. And it will turn out that this investigation will lead us to even
greater improvements in accuracy.

A natural way to turn (12) into an approximation for fa b f(x)dx would be to in-
corporate the missed intervals [x¢, x;,2] and [x,_i,2, x,] into our first and last appli-
cations of (10), which approximate the integrals of f* on the intervals [x;,, x3/2] and
[xn-3/2, Xn—1/2]. Thus, after finding the unique quadratic polynomial g that agrees with
f at the points xg, x;, and x,, we would approximate the integral of f over the inter-
val [xo, x3,,] with the integral of g over the same interval. We would similarly modify
our last application of (10) so that it would approximate the integral of f over the
interval [x,_3/2, x,], and the rest of the interval [a, b] would be covered by the other
applications of (10), which would remain unchanged. We will call the resulting rule
the expanded central Simpson’s rule.

Unfortunately, computing the formula for the expanded central Simpson’s rule
shows that it is exactly the same as the Peters-Maley rule, which, as we have already
observed, has a larger error bound than Simpson’s rule. Apparently, the error in the
first and last intervals of the expanded central Simpson’s rule can be much larger than
the error in all other intervals combined, thus canceling out everything we have gained.

Intuitively, it seems that the reason the errors in the first and last intervals are so large
is that these intervals are unbalanced relative to the quadratic approximation being
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used. For example, the integral of f over the interval [x¢, x3,,] is approximated using
a quadratic that agrees with f at xq, x1, and x,, so the interval includes more of the
left half of the quadratic approximation than the right half. This lack of balance ruins
the partial cancellation of errors from the two halves of the quadratic approximation
that often occurs in each step of Simpson’s rule. This suggests that we might be able
to reduce the error by shrinking the first and last intervals in our original partition, thus
making the first and last approximations more balanced.

To implement this suggestion, we will modify our partition so that [x¢, x;] and
[x,—1, x,] have width r Ax, for some constant » between 0 and 1, and all other inter-
vals in the partition have width Ax. As before, we approximate | ?/ 2 f(x)dx with
f;:/z q(x) dx, where g is the unique quadratic polynomial such that g (xo) = f(xo),

q(x;) = f(x1),and g(x,) = f(x»). This leads to the approximation

Qr+DQ@r24+2r—1)

fx) dx ~ AX[ 2t D) f (xo)

x3/2

X0

Q@r+1D%(r+2) @r+ D1 —r)
+ 2ar fx)+ 240 1+ 1) f(Xz)]- (15)
We approximate the integral of f over the interval [x, 3,2, x,] in a similar way, and
add these approximations to the sum of the approximations (10) for 1 <i <n — 3.
We will call the resulting approximation the r-expanded central Simpson’s rule. (Note
that the case r = | is just the expanded central Simpson’s rule.) All that remains is to
choose the value of r.

We want to choose » so as to minimize the error in the r-expanded rule, so we need
an estimate of this error. The estimate we will use is based on Peano’s theorem [2,
pp- 285-287]. According to Peano’s theorem, if f'*'(x) is continuous on [a. b], then
the error in any of the approximations we are considering is given by the formula

b
/ fPOK (x) dx,
where K (x) is a function called the Peano kernel for the approximation. Different
approximations have different Peano kernels, and therefore different errors. If we as-
sume, as usual, that | f*®(x)| < M for all x € (a, b), then the magnitude of the error
is at most

b b
5/ [fPOK@)|dy <M | |K()]dx.

a

b
/ FPK (x)dx

Thus, to minimize this error bound we should choose an approximation for which
fah |K (x)| dx is as small as possible.

Unfortunately, the formula for the Peano kernel is somewhat complicated, and the
analysis of the Peano kernels of the r-expanded rules for different values of r is rather
involved. Here, we will simply report the results of this analysis.

FIGURE 5 shows the Peano kernels for three approximations, with n = 10. It is
clear from the figure that | f’ |K (x)| dx is larger for the 1-expanded rule than for Simp-
son’s rule. This justifies our earlier claim that the 1-expanded rule is less accurate than
Simpson’s rule. For large n, the optimal value of r in the r-expanded rule turns out

tobe r = (v/12 + 491 — 2)/4 ~ 0.660264, and it is also clear from FIGURE 5 that
f: |K (x)| dx will be significantly smaller for this rule than for Simpson’s rule.

Although the optimal value of r is rather complicated, it happens to be very close
to 2/3. This suggests that r = 2/3 would be a good choice; the gain in simplicity from
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Figure 5 Peano kernels, with n = 10, for Simpson’s rule (— — —) and the r-expanded

....... yand r = (v 12 + /91 — 2)/4 ~ 0.660264 (—)

central Simpson’s rules with r =1 (

using this value of » rather than the optimal value seems worth the resulting slight loss

of accuracy.
To approximate fa b f(x) dx using the 2/3-expanded central Simpson’s rule, we pro-

ceed as follows: Since the first and last intervals will have width 2Ax /3 rather than
Ax,we must have b —a = (n — 2/3)Ax. We therefore let Ax = (b —a)/(n — 2/3),
Xo=a,x; =x0+2Ax/3,x;=x;+({ —1Axfor2 <i <n-—1,and x, = x,_1 +
2Ax/3 = b. To approximate the integral of f on the interval [xg, x3,2] we use (15)
with r = 2/3, which leads to the approximation

6 77 49 49
f(x)dx ~ Ax [%f(xo) + if(-xl) + @f(xz)] .

X0
We use a similar formula to approximate the integral of f on the interval [x,_3/2, X1,
and the rest of the interval [a, b] is covered by the approximations (10) for 1 <i <
n — 3. Summing all of these approximations leads to the following formula for the

2/3-expanded rule:
" orde ~ a7 205 271
/a f)dx ~ Ax [—f(m F 202 FO) + 2 f ) + £ )+ )

360
271 05 77
+ o+ fxa-3) + mf(xn—Z) + mf(xn—l) + ﬁf(xn)] .

Of course, this is another symmetrized rule, with all coefficients except the first
three and the last three equal to 1. We can find a bound for the error by integrating

the absolute value of the Peano kernel and applying Peano’s theorem. This calculation
shows that the magnitude of the error in the 2/3-expanded rule is at most

5 _ S
n)\n-2/3 180n*

where M is, as usual, an upper bound on | f* (x)|, « is given by the formula

171 4+ 2v/81 — 124/30 + 36v/270 — 40+/30
_ . ~ 0.149411,

and B is a constant whose formula is too complicated to print here, but whose numeri-
cal value is approximately 0.0309389. For large n, this error bound is about 0.149411
times the error bound for Simpson’s rule, an improvement by a factor of almost 7.
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The error bounds for the r-expanded rules with other values of r have the same
form, but with n — 2/3 replaced by n — 2 + 2r, and with different values for the con-
stants & and B. The optimal value of r given earlier is optimal in the sense that it leads
to the smallest value of «. This smallest value is 75/512 ~ 0.146484, so the increase
in error that results from using r = 2/3 rather than the optimal value of r is fairly
small.

In addition to greater simplicity, the use of r = 2/3 has another modest advantage:
Suppose we use the 2/3-expanded rule to compute an approximation of f( Ib f(x)dx,
and then we decide that we want to compute a more accurate approximation by in-
creasing the value of n. If we increase n to 4n — 2, then it is easy to verify that the new
value of Ax will be exactly 1/4 of the old one, and all the old sample points will be
among the new sample points. Thus, we can reuse all of our function evaluations from
the first use of the 2/3-expanded rule.

The 2/3-expanded rule avoids the problems of the central Simpson’s rule, because
it does not involve the use of sample points outside of the interval [a, »]. However, it
does have one limitation: It cannot be used if the only information we have about f is
a table of values at evenly spaced sample points. Thus, it would be interesting to know
if it is possible to formulate a rule based on (12) that uses exactly the same sample
points as Simpson’s rule.

The difficulty in formulating such a rule is, as usual, that we must find a way to ap-
proximate the integrals of f over the troublesome intervals [xy, x;,,] and [x,- 2, X, ].
The simplest way to deal with these intervals while guaranteeing that the final approx-
imation will be exact for cubic polynomials is to use a cubic approximation for each
of these intervals. For example, we might approximate the integrals of f over these
intervals with the integrals of cubic polynomials that agree with f at the first four and
last four sample points. We will not pursue this approach here, since it violates the
spirit of this paper, which is to use only quadratic approximations. However, we note
that the resulting formula would be exactly the same as the formula Q}? derived by
Peter Kohler [S]. The error bound for large n is approximately 17/32 times the error
bound for Simpson’s rule.

Examples

FIGURE 6 shows the ratios of our bounds on the errors in the central Simpson’s rule
and the 2/3-expanded rule (formulas (14) and (16)) to the error bound for Simpson’s
rule (formula (5)), as functions of n. In all of these error bounds, the coefficients are the
best possible. For Simpson’s rule and the central Simpson’s rule, this can be seen by
considering f(x) = x*. This function has a constant fourth derivative, f¥(x) = 4! =
24, so we can use M = 24 in our error bounds. But then M is not just an upper bound
on the magnitude of the quantity f®(c,) that appears in the lemma, it is actually
equal to that quantity. It follows that our error bound calculations actually give the
exact magnitudes of the errors involved for this function.

However, the magnitude of the error in the 2/3-expanded rule for the function
f(x) = x* is smaller than the error bound (16) for that rule. The reason is that ac-
cording to Peano’s theorem, the error in the 2/3-expanded rule in this case is

b
/ K(x)dx

a

b
/f<4>(x)1<(x)dx =M

a

9’

.. b .
and this is smaller than our bound M fa |K (x)|dx, since the Peano kernel for the
2/3-expanded rule is sometimes positive and sometimes negative. However, it can be
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Figure 6 Ratios of error bounds for the central Simpson’s rule (upper curve) and the
2/3-expanded rule (lower curve) to the error bound for Simpson’s rule, as functions of n,
for 5 < n < 30 (The dashed lines are at 1, 17/32, and 0.149441.)

shown, by using an example that is more complicated than x*, that our error bound for
the 2/3-expanded rule is the best possible.

These observations are confirmed by TABLE 1, which shows the values, errors, and
error bounds for the approximations of the integral fol x*dx = 0.2 by Simpson’s rule,
the central Simpson’s rule, and the 2/3-expanded rule, using n = 10, n = 20, and
n = 100. All of the errors are negative, indicating that our approximations are larger
than the exact value of the integral. As expected, the magnitudes of all of the errors for
Simpson’s rule and the central Simpson’s rule are exactly equal to the bounds given
by (5) and (14), but the magnitudes of the errors for the 2 /3-expanded rule are smaller
than the bounds given by (16).

TABLE 1: Approximation of [ x* dx = 0.2

Simpson’s rule Central rule 2/3 rule

n=10 Value 0.20001333 0.20001080 0.20000144
Error —1333x 107> —1.080 x 10> —1.437 x 107®
Error Bound 1.333 x 107 1.080 x 1072 2.755 x 107

n=20 Value 0.200000833 0.200000544 0.200000067
Error —8.333 x 1077 —5435x 1077 —6.663 x 1078
Error Bound 8.333 x 1077 5.435 x 1077 1.460 x 1077
n =100 Value 0.20000000133  0.20000000074  0.20000000008
Error —1333x107° —7.374x 1070 —8.329 x 1011
Error Bound 1.333 x 107° 7.374 x 10710 2.056 x 10710

Next we consider the integral f020 sinxdx =1 — cos20 &~ 0.5919179382. FIG-
URE 7 shows the approximations of this integral using Simpson’s rule, the central
Simpson’s rule, and the 2/3-expanded rule, with » = 10 in all cases. In each graph,
the dashed lines are the quadratic approximations to y = sin x, the black dots are the
sample points, and the shaded region is the region whose area is being used to approx-
imate the integral.

A striking problem with Simpson’s rule is evident in FIGURE 7(a) at the fifth sample
point, which occurs near the second local maximum of the curve. This point is in the
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(a) (b)

Figure 7 Approximation of jgosinxdx using (a) Simpson’s rule, (b) the central Simp-
son’s rule, and (c) the 2/3-expanded rule, with n =10

middle of an interval on which the curve is concave down, but the Simpson’s rule
approximation does not detect this fact, because this sample point is the dividing point
between two intervals on which sin x is approximated by quadratic polynomials, not a
midpoint of such an interval. This problem does not occur in FIGURES 7(b) and 7(c).

TABLE 2 shows the values of our various approximations for this integral, and their
errors and error bounds, for n = 10, n = 20, and n = 100. As expected, the central
Simpson’s rule is more accurate than Simpson’s rule, and the 2/3-expanded rule is the
most accurate of the three.

TABLE 2: Approximation of [ ’sinx dx ~ 0.5919179382

Simpson’s rule Central rule 2/3 rule
n=10 Value 0.68735 0.63563 0.61913
Error —0.09543 —0.04371 —0.02721
Error Bound 1.778 1.439 0.3673
n =720 Value 0.595644 0.594072 0.592909
Error —0.003726 —0.002154 —0.000991
Error Bound 0.11111 0.07247 0.01946
n =100 Value  0.591923225 0.591920848 0.591918449
Error —5.287 x 107® —2910x 10~® —5.109 x 107’
Error Bound 1.778 x 10~ 9.832 x 1073 2.741 x 107

Finally, we provide in TABLE 3 some calculations for the integral

1
4
/ dx =m.
0 1—|—x2
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Surprisingly, although the central Simpson’s rule does much better than Simpson’s rule
on this integral, the 2/3-expanded rule does much worse.

TABLE 3: Approximation of f()] H% dx=m

Simpson’s rule  Central rule 2/3 rule
n=10 Error 3.965 x 1078 1.166 x 107° —6.271 x 1077
Error Bound 5.333 x 107> 4.318 x 1073 1.102 x 107
n=20 Error 6.200 x 1071 1.318 x 107'"  —1.793 x 1078
Error Bound 3.333 x 107®  2.174 x 107° 5.839 x 1077
n =100 Error 3.968 x 1071  6.586 x 107! —5.187 x 10712

Error Bound 5.333 x 107°  2.950 x 10~° 8.223 x 10710

All of the tables and graphs for the examples in this section were created using
Mathematica. Readers who want to try more examples themselves can find a Mathe-
matica notebook that computes all of our integration rules at www.maa.org/pubs/
mathmag.html.

Conclusion and extensions

We have found several ways to improve on Simpson’s rule while treating the even- and
odd-numbered sample points symmetrically. The key idea behind these improvements
is to fit quadratic polynomials to f at triples of successive sample points spanning
intervals of width 2Ax, as in the usual Simpson’s rule, but then to integrate these
polynomials over intervals of width only Ax.

This idea can also be applied to the other Newton-Cotes numerical integration for-
mulas, which are all based on approximating f with polynomials. As an example, we
briefly discuss the application of this idea to Boole’s rule [2, p. 78]. To approximate
f{ :; f(x) dx by Boole’s rule, we begin by dividing the interval [a, b] into n subintervals
of width Ax = (b — a)/n, where n is a multiple of 4. Then for each i that is a multiple
of 4,0 <i <n — 4, we approximate f on the interval [x;, x; 4] with a polynomial of
degree 4 that agrees with f at all five of the sample points in this interval, and approx-
imate the integral of f on this interval with the integral of the polynomial. Summing
all of these approximations yields the approximation

b 14 64 8 64
/a f(x)dx ~ Ax [Zs—f(xo) + Ef(xl) + Ef(xz) + 4—5—f(x3)
28 64 8 64
+ Ef()u) + Ef(xs) + Ef(xs) + 4—5—f(x7)

28 64 14
+ Ef(XS) +---+ Ef(xn—l) + Ef(xn)] .

To improve and symmetrize Boole’s rule, we again find a polynomial of degree 4
agreeing with f at all sample points in the interval [x;, x;,4], but we only integrate
this polynomial over an interval of width Ax centered at x;,,, to get an approxima-
tion of f;’; 5//22 f(x) dx. Summing these approximations for 0 < i < n — 4 yields the
approximation
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Xn-3/2
/x fx)dx =~ Ax[ 5760f( Xo) + 1920f( 1)+ f(xz)

" 1920
576Of(x3) + f(X4) + f(XS) +--+ f(x,,,4) + 576Of(xn '%)

1823 17 17

+ 1920f(xn 2) + 1920f( n— ) - %f(xn)jl - ( )

The error bound for this approximation is about 367/2048 = 0.179 times the error

bound for Boole’s rule. To get an approximation for f‘b f(x)dx, we would need to
modify (17) to get it to cover the entire interval [a, b]. We leave the details of this
modification to the reader.

Acknowledgment. 1 would like to thank Norton Starr and several anonymous referees for helpful comments on
earlier drafts of this paper.
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A tromino (thymes with domino) is a shape made up of three 1 x 1 squares assembled
as shown.

Figure 1 A tromino

We will classify a variety of nearly rectangular shapes into those that can be tiled
by trominoes and those that cannot. From now on we will simply say tiled to mean
tiled by trominoes. We will consider shapes that are integer-dimensioned rectangles
with each dimension at least 2, and with one or two 1 x 1 squares removed. If one
square is removed, call the resultant shape a deficient rectangle. If the removed square
was a corner square, call the resulting deficient rectangle a dog-eared rectangle. The
area of a tromino is 3, so, evidentially, only shapes whose area is a multiple of 3 can
be tiled by trominoes. In this paper we will determine which deficient rectangles with
area divisible by 3 are tileable and which are not; in particular, all the dog-eared ones
are tileable. We will also get some partial results for the same question for rectangles
with two squares removed and remaining area divisible by 3.

We especially recommend the proof of the Deficient 5 x 5 Lemma to the casual
reader.

Trominoes were introduced by Golomb [3], who proved that deficient squares
whose side length is a power of two can be tiled. Chu and Johnsonbaugh first extended
Golomb’s work to the general cases of deficient squares [1]. They later went on to
rectangles and proved a slightly weaker version [2] of what we call the Deficient
Rectangle Theorem. The Proposition in the last section answers a question posed by
Chu and Johnsonbaugh [1].

Before proceeding with the business at hand, we will mention a few general facts
about trominoes and about another tiling question involving tiles other than trominoes.

46
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A tromino is a special case of a polyomino, a shape made by connecting certain
numbers of 1 x 1 squares, each joined together with at least one other square along an
edge. The polyomino of area 1, a single 1 x 1 tile is called a monomino. The polyomino
of area 2 is the domino. Let P(n) be the number of distinct polyominoes of area n. For
example, P(3) = 2, since there are actually two trominoes: a straight tromino, which
has the shape of a 1 x 3 rectangle, and the object shown in FIGURE 1, which is called a
right tromino when it needs to be distinguished from the straight one, but which will be
the only kind of tromino discussed in this paper. Notice that in defining P, orientation
is ignored. For example, the three objects created by rotating the tromino shown in
FIGURE 1 by 90°, 180°, and 270° are not counted as distinct from the original tromino.
For results and open questions about the exponentially growing values of P (n), see [4,
Appendix D].

Four trominoes can be fit together to form a tromino-shaped 4-reptile, that is, a set
in the plane that can be tiled by four congruent scaled down copies of itself. A tromino
has order 2, which means that the minimum number of trominoes required to form
a rectangle is 2, as in FIGURE 2. Finding the order of other polyominoes provides
challenging problems [4, Chapter 8]. The entire plane can be tiled in a periodic way
by any polyomino of finite order by simply repeating copies of the minimal rectangle.

Roger Penrose has given a remarkably simple aperiodic tiling of the entire plane
using copies of only two unit-edged rhombi, one with acute angle 36° and the other
with acute angle 72° [8]. Tilings are often found in Moorish architecture; some tromi-
noes can be seen in a display case in the Reales Alcazares, a great Arabian style palace
built during various epochs in Seville, Spain. A comprehensive and interesting book
concerning tiling is Tilings and Patterns [5]. There is lots of information about tiling
available on the internet; typing “tromino” into a search engine produced 577 hits. We
recommend http://www.ics.uci.edu/"eppstein/junkyard/polyomino.
html and http://www.amherst.edu/ " nstarr/.

Elementary results for rectangles A basic tiling result that we will need identifies
precisely which rectangles can be tiled. Let’s start with some simple cases. First of all,
a 2 x 3 rectangle can be tiled by trominoes.

Figure 2 Tiling R(2, 3)

Denote a rectangle with i rows and j columns by R(i, j). We will indicate de-
compositions into nonoverlapping subrectangles by means of an additive notation. For
example, a 3 x 2j rectangle can be decomposed into ij 3 x 2 subrectangles and we
write this fact as R(3i,2j) = >, > I, R(3,2) = ijR(3,2). It follows from this
and the tiling in FIGURE 2 that

any 3i x 2j or 2i x 3j rectangle can be tiled. (1)

From now on, any rectangle decomposed into a combination of 3i x 2j subrectangles,
2i x 3j subrectangles, and trominoes will be considered as successfully tiled by tro-
minoes. Denote the 1 x | square lying in row i and column j as (i, j).
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Now let’s look at some rectangles that cannot be tiled. Suppose that a 3 x 3 square
Q has been tiled. Some tromino must cover square (3, 1). Here are the three possible
ways that it can do that.

A B C
Figure 3 An impossibility proof

Orientation A is immediately ruled out, since square (1, 1) cannot be tiled. But in
cases B and C, the tiling must tile the leftmost 3 x 2 subrectangle of Q, so that the
original tiling is also a tiling of the third column of Q, which is an R(3, 1). This is
impossible. Similarly, suppose that a 3 x 5 rectangle R has been tiled. This argument
shows that the tiling must tile the first two columns of R, and hence also the rightmost
three columns of R. This is a contradiction since we have just shown 3 x 3 square to
be untileable. Iterating this procedure shows no R(3, odd) can be tiled. It turns out that
there are no other untileable rectangles with area divisible by 3.

The integers m and n will always be greater than or equal to 2.

CHU-JOHNSONBAUGH THEOREM [2]. Anm X n rectangle can always be tiled by
trominoes if 3 divides its area mn, except when one dimension is 3 and the other is

odd.

The proof of this is not hard. We suggest that the reader give it a try. Here are a
few hints. Use fact (1) several times. First do the cases R(3k, even); then do the cases
R(6k, odd). This leaves only the cases R(9 + 6k, n), where n > 5 is an odd integer.
Reduce such a case to R(9, 5). Finally tile R(9, 5) by trial and error. If you have trouble
with the last step, leaf ahead to the top left picture in FIGURE 9.

Dog-ears An m x n dog-eared rectangle is an m x n rectangle with a | x 1 cor-
ner square removed. We will denote the dog-eared rectangle by R(m, n)~, so that
R(m,n)” = R(m, n) \ {(1, n)}. Note that the area of R(m, n)~ is mn — 1. If this rect-
angle is rotated 180°, a similar figure with missing lower left-hand corner is created.
If it is reflected about a central vertical (resp., horizontal) axis, a similar figure with
missing upper left-hand (resp., lower right-hand) corner is created. The problem of
tiling the original figure is clearly equivalent to tiling any one of the other three, even
though the original figure cannot be rotated into either of the last two figures.

DOG-EARED RECTANGLE THEOREM. Anm X n dog-eared rectangle can be tiled
with trominoes if and only if 3 divides its area.

To understand what this theorem means, note that if mn is congruent to 0 or 2 mod-
ulo 3, then the area of R(m, n)~ is not congruent to O modulo 3 and so that dog-eared
rectangle cannot be tiled by trominoes, since the area of any region tiled by tromi-
noes must be an integral multiple of 3. So the only m x n dog-eared rectangles that
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n

Figure 4 A dog-eared rectangle

could possibly be tiled by trominoes are those for which mn is congruent to 1. In other
words, the only m x n dog-eared rectangles that could possibly be tiled by trominoes
are those for which m = n = 1(mod3) or m = n = 2 (mod 3), and, indeed, all those
dog-eared rectangles can be tiled.

We start with a family of special cases of the Dog-eared Rectangle Theorem, the
dog-eared dyadic squares, R(2*,2%)~. This is a special case of a well-known and
beautiful example of mathematical induction [3], [4, page 4], [6, page 45], [9, prob-
lem 2.3.38]. If k = 1, note that R(2,2)" is itself a tromino. If kK = 2, see FIGURE 5
for a covering of R(4,4)~. In FIGURE 5, R(4, 4)~ was tiled by dividing it into 4 quad-
rants. The upper right quadrant was an R(2, 2)” while the other three quadrants were
all congruent to R(2, 2). Then the black tromino covering squares (2, 2), (2, 3), and
(3, 3) was placed at the center. This reduced the lower left quadrant to an R(2, 2)~ and
the remaining two quadrants to rotations of R(2, 2)". In short, the tiling of R(4,4)"
was reduced to the tiling of four copies of R(2, 2)~. The reader should nextdo k = 3,
by dividing R(8,8) into 4 quadrants, and then covering the central squares (4,4),
(4,5), and (5, 5) with a tromino. This reduces the tiling of R(8, 8)~ to the tiling of
four copies of R(4,4)~. The general inductive proof should now be clear.

Figure 5 Tiling R(4, 4)"

Proof of the Dog-eared Rectangle Theorem: Let m < n. As mentioned above, the
necessary condition that 3 divide the area of R~ = R(m, n)~ splits into the cases
m=n = 1(mod3) and m = n = 2 (mod 3). It is not hard to see that the m x n dog-
eared rectangle is congruent to the n x m one. So, in the former case, we have either
R(4,3k +4)~ with k > 0, R(7,6k +7)” with k > 0, R(7,6k + 4)~ with k > 1, or
R@3j + 4,3k +4)" with j > 2 and k > 2. There correspond these four decomposi-
tions:
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R4,3k+4)" =R4,3k)+ R4,4)", k>0
R(7,6k+7)" =R(7,6k) + R(7,7) , k>0
R(7,6k+4)" = R(7,6k) + R(4,3)+ R(4,4)",k > 1 and
RBj+4,3+4) =R@3j,3%k+4)+R4,3k)+R(4,4)",j,k=>2.

For the algebraically inclined reader, these decompositions need no further explana-
tion. However, the geometrically inclined reader should draw pictures to visualize
them. (All the similar decompositions appearing below have straightforward geomet-
rical interpretations.) Here, in the first three cases, a large rectangle was stripped from
the left side of the figure. In the fourth case, first a large rectangle was removed from
the bottom, and then another from the left side of what remained. All the full rect-
angles are tileable by the Chu-Johnsonbaugh Theorem, R(4, 4)~ is tiled as in FIGURE
5, and the tiling of R(7,7)~ appears in Chu and Johnsonbaugh [1].

In the latter case, we must tile R~ = R(3j + 2,3k +2)~ where 0 < j < k. If
Jj # 1, we have

R~ = R(3j,3k) + R(3j,2) + R(2,3k) + R(2,2)".

The first three terms are tiled by the Chu-Johnsonbaugh Theorem, while the last
term actually is a tromino. Let j = 1. Either &k is odd, 3k + 2 = 6£ + 5; or else k is
even, 3k + 2 = 6¢ + 8. Correspondingly, either R~ = R(5,6¢ 4+ 5) = R(5,6¢) +
R(5,5)” where the first term is tiled with the Chu-Johnsonbaugh Theorem and
R(5,5)” is tiled as in FIGURE 6, or else R~ = R(5,6¢ +8)~ = R(5, 6¢) + R(5, 8)~
where again the first term is tiled with the Chu-Johnsonbaugh Theorem and we also
have R(5,8)” = R(5,6) + R(3,2) + R(2,2)7, the first two terms being tiled by the
Chu-Johnsonbaugh Theorem, while the last term is a tromino. [ ]

L

3x2
2x3

Figure 6 Tiling R(5,5)~

Here is an application of the Chu-Johnsonbaugh and Dog-eared Rectangle The-
orems. Consider the practical question of tiling as much as possible of any m x n
rectangle, where m and n both exceed 3. There are 3 cases depending on the value of
mn modulo 3. If mn = 0, tile the entire rectangle with the Chu-Johnsonbaugh Theo-
rem. If mn = 1, remove a single corner square and then use the Dog-eared Rectangle
Theorem to tile the rest of the rectangle. If mn = 2, we must remove 2 squares. It
turns out that if mn = 2 and if a corner square and a boundary square adjacent to it
are both removed, what remains can always be tiled. This can be proved by methods
very similar to those used to prove the other two theorems. We will leave its proof as
an exercise.

Deficiency Call arectangle withone 1 x 1 square missing a deficient rectangle. Thus
to the rectangle R(m, n) correspond mn deficient rectangles, each being formed by
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removing one square from R(m, n); exactly 4 of these are congruent to R(m,n)".
The question of whether a deficient rectangle can be tiled with trominoes is clearly
equivalent to the question of whether the full rectangle consisting of the disjoint union
of the deficient rectangle and the 1 x 1 square can be tiled by a set of trominoes and a
single monomino, with the monomino covering the missing square.

Say that a 1 x 1 square is good if its removal from a full m x n rectangle produces
a deficient rectangle that can be tiled. We will now enumerate some m x n deficient
rectangles that cannot be tiled, even though 3 divides mn — 1. This enumeration will
be very precise in the sense that for each m and n the location of the bad squares will be
specified. In the very interesting case when m = n = 5, the following lemma produces
16 bad squares.

DEFICIENTS x S LEMMA. Ifthe square (i, j) is removed from the S x S rectangles
where either i or | is even, then the resulting shape is not tileable.

Proof. Form a kind of checkerboard design by marking each of the nine squares

(I, D, (1,3), (1,5,
G. D, 3.3, G5,
G.D, (5.3, 5.5,

and assume that one of the 16 unmarked squares has been removed from R(S, 5) to
form R~. Then a proposed tiling of R~ must contain one tromino for each of the 9
marked squares, so that tiling must have area at least 9 - 3 = 27, which is absurd since

the area of R~ is 24. Thus all 16 of the unmarked squares are bad. ]

Next we note that bad squares can also occur when (m,n) = (2,5 + 3k), k =
0, 1, 2, .... Here some bad squares are those of the form (x,3)), j =1,2, ..., k+1,
x = 1 or 2. By symmetry we may assume that x = |. To show that R(2,5 4+ 3k) \

{(1,3))} cannot be tiled, assume the opposite and let 7' be the tromino covering the
square (2, 3j). Then to the left of 7 + {(1, 3j)} lies either the rectangle R(2,3; — 1)
or the rectangle R(2, 3j — 2), neither of which has area divisible by 3.

Finally, the square (3,2) is bad in the 5 x (5 + 3k) case, that is, R(5, n) \ {(3, 2)}
cannot be tiled. For if (3,2) were good, some tromino 7" would have to cover the
square (3, 1). If 7' lay above (3, 2) the square (1, 1) could not be reached, otherwise
the square (5, 1) could not be reached. Symmetrically, (3, 4 + 3k) is also bad in this
case.

DEFICIENT RECTANGLE THEOREM (COMPARE [2]). An m x n deficient rect-
angle, 2 < m < n,3|mn — 1, has a tiling, regardless of the position of the miss-
ing square, if and only if (a) neither side has length 2 unless both of them do, and
(b) m # 5. Furthermore, in all the exceptional cases the only bad squares are those
enumerated in the preceding discussion.

Proof. For this proof only, we change notation slightly and let R(im, n)~ denote any
m x n rectangle of deficiency 1. The “outlier” R(2, 2)" is tiled with one tromino. First
assume that m > 4, m # 5, and 3 { m. The method of proof is to proceed inductively
after treating the cases m = 4, 7, 8, 10, and 11 individually. If m > 13, thenm — 6 > 6
so that we may slice a full rectangle of height 6 off of either the top or the bottom of
R(m,n)", thatis, R(m,n)” = R(m — 6, n)~ + R(6, n). Since the last term is tileable
by the Chu-Johnsonbaugh Theorem, this first reduces the cases m € [13, 17] to the
cases m € [7, 11], then the cases m € [19, 23] to the cases m € [13, 17], and so on.

It m =4, write R(4,3k+ 1) = (k—1)R(4,3) + R(4,4)~. Apply the Chu-
Johnsonbaugh Theorem to the first k — 1 terms. For the last term, observe that in [3],
Golomb showed that all 2% x 2% deficient squares can be tiled. (Its proof is an induc-
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tion argument almost identical to the one used above to tile the 2* x 2* dog-eared
squares.) If m = 7, we may write R(7,n)” = R(3, n) + R(4,n)~ and thus reduce
the m = 7 case to the m = 4 case when n is even; while if n is odd, 6 divides n — 7
and R(7,n)” = ((n — 7)/6)R(7,6) + R(7,7)" is tiled using the Chu-Johnsonbaugh
Theorem and reference [2]. If m = 10; then R(10,n)”™ = R(7,n)” + R(3, n) so that
the Chu-Johnsonbaugh Theorem provides a reduction to the m = 7 case if n is even,
while R(10,n)” = R(10,n — 3)™ 4+ R(10, 3) reduces the odd n case to the even n
case.If m = 8, R(8,n)” = R(8,8+3k)™ = kR(8, 3) + R(8, 8)~ is tiled by the Chu-
Johnsonbaugh Theorem and reference [3]. Finally if m = 11, n must be congruent to
either 8 or 11 modulo 6. If n = 8 + 6k, R(11,8 + 6k)™ = kR(11,6) + R(11, 8)~ with
the first terms tiled by the Chu-Johnsonbaugh Theorem and the last term tiled by the
m = 8 case since R(11,8)” = R(8,11)7, while if n = 11 4+ 6k, R(11,11 4+ 6k)” =
kR(11,6) + R(11, 11)7; the first terms are tiled by the Chu-Johnsonbaugh Theorem
and the tiling of the last term can be found in reference [1].

In view of the treatment of all the bad cases before the statement of this theo-
rem, it remains only to analyze the exceptional good cases. Since 3 divides mn — 1,
if m =2, we must have n =2 +3k,k =0,1, ..., while if m = 5, we must have
n=543kk=0,1,2,.... Also notice that the (m, n) = (2, 2) case is not an excep-
tion. We’ll start with the 5 x 5 good cases. The tiling in FIGURE 6 above shows that
(1,5) is good, while these two tilings show (3, 5) and (3, 3) to be good. Symmetry
considerations show that the remaining six marked tiles are also good. Thus all nine
marked tiles are good.

Figure 7 Tiling deficient 5 x 5 rectangles

Next, if (m,n) = (2,54 3k), k=0, 1, ..., we determine to be good all the squares
of the form (x,3j +1)or (x,3j +2),j=0,1,...,k+ 1, where x = 1 or 2. In fact,
we may write any of these as (k + 1)R(2, 3) + R(2,2)7, apply (1) to each of the first
k + 1 terms, and use one more tromino to cover R(2,2)".

It remains to treat the deficient rectangles R(5, 8 + 3k)~, where k > 0 and the re-
moved square is neither (3, 2) nor (3, 7 + 3k). Assume that all the cases R(5, 8)~ and
R(5, 11)™ have been done and that any square removed from now on is not (3, 2). Let
the square (i, j) be removed from R(5, 14). Symmetry allows the assumption j < 7.
If (i, j) # (3,7), then the decomposition of the resulting R(5, 14)~ into an R(S5, 8)~
on the left and an R(5, 6) on the right allows a tiling, while R(5, 14) \ {(3, 7)} is tiled
by decomposing it into an R(S, 6) on the left and an R(5, 8)~ on the right. The cases
of R(5,n),n > 17 will be treated inductively. Symmetry allows us to consider only
R(5, n) \ {(i, j)} where j < n/2 < n — 8 and where all but 2 tiles of R(5,n — 6) are
good. Now decompose into R(5,n — 6)~ on the left and R(5, 6) on the right. Since
J # (n —6) — 1 the first term may be tiled, while the second is tiled with the Chu-
Johnsonbaugh Theorem.

The cases R(5, 8). By symmetry we may assume i > 3 and j < 4. Since (3, 2)
is bad, we have 11 cases to show good. If i > 4 and j € {l, 2, 4}, then (i, j) is a
good square of R(2, 8), so the decomposition of R(5, 8)~ into a full upper rectangle
R(3, 8) and a lower R(2, 8)~ works in all six of these cases. There remain the five
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cases (i, j) = (3, 1), (5, 3), (4,3), (3, 3), and (3, 4). These are done in ad hoc fashion

i; 2x3 — 2
3x2 * x3

(3.1) (5.3)

Rotate the outlined square 90°
clockwise to tile the (4,3) case

(3.3) (3.4)

Figure 8 Deficient 5 x 9 tilings

The cases R(5, 11). By symmetry we may assume i > 3 and j < 6. Since (3, 2) is
bad, we have 17 cases to show good. If i and j are both odd, (i, j) is a good square of
R(5, 5), so the decomposition of R(S5, 11)~ into a left R(5,5)™ and a full right R(S, 6)
works for these 6 cases. Five of the remaining 11 cases are done in ad hoc fashion in
FIGURE 9. A dark outlined 2 x 2 square appears in the tiling for the (4, 1) case that is
shown as the top left picture of FIGURE 9. Rotate that square 90° clockwise to produce
a tiling for the (4, 2) case; then rotate it another 90° to produce a tiling for the (5, 2)

JT

4.1 (4.3) (4.5)

| |

(3.4) (3.6)

Figure 9 Deficient 5 x 11 tilings



54 MATHEMATICS MAGAZINE

case. Similar pairs of rotations produce tilings of the (4, 4) and (5, 4) cases from the
displayed tiling of the (4, 3) case, as well as tilings of the (4, 6) and (5, 6) cases from
the displayed tiling of the (4, 5) case. ]

Results and questions about 2-deficiency If two squares are removed from a rect-
angle, call the resultant shape a 2-deficient rectangle. The following proposition dis-
allows the possibility of making the natural definition of deficiency of order k, k > 2
and then finding a direct extension of the Deficient Rectangle Theorem for higher de-
ficiencies.

PROPOSITION. No rectangle has the property that no matter which two 1 x 1
squares are removed, the remaining shape of area mn — 2 can be tiled.

For if the squares (1, 2) and (2, 1) are removed, then the square (1, 1) cannot be
covered by a tromino. (This also shows the proposition still holds even if “tiling”
is extended to mean “tiling by any collection of polyominoes which contains no
monomino.”)

Even though there will not be adirect analogue of the Deficient Rectangle Theorem,
there is room for some interesting work to be done here. Here is a program for what
to do about 2-deficiency. We extend the definition of good to 2-deficiency. A pair of
squares is good if their removal from a m x n rectangle leaves a figure that can be
tiled.

PROBLEM. For the general case of 2-deficiency, find all bad pairs of squares for
all m x n rectangles where mn = 2 (mod 3). Slightly less generally, exactly when can
such a rectangle be covered by one domino and (mn — 2)/3 trominoes?

On the negative side, as we pointed out in the proof of the Proposition, the pair
{2, 1), (1,2)} is bad, that is, if square (2, 1) and square (1,2) are removed, then
no tromino can cover square (1, 1). On the positive side, recall that in the applica-
tion given after the proof of the Dog-eared Rectangle Theorem we pointed out that
a tiling is always possible if the two removed squares are adjacent and in a corner
of the rectangle. In other words, if mn = 2(mod 3), then the pair {(1, n), (2, n)} is
good. Now consider the 5 x 7 case. As in the analysis of the 5 x 5 case for defi-
cient rectangles done above, form a checkerboard-like pattern by marking each of the
12 squares that have both coordinates odd and assume that two of the 23 unmarked
squares have been removed from R(5, 7) to form R=. Then a proposed tiling of R~
must contain one tromino for each of the 12 marked squares, so that tiling must have
area at least 12 - 3 = 36, which is absurd since the area of R= is 33. This reasoning
disqualifies (223) = 253 pairs. Similar reasoning identifies a large number of bad pairs
for R(5,13),...,R(5,7 4+ 6k), ....
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Extremal Curves of a Rotating Ellipse
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Denote by N (¢) the highest point on an ellipse after it’s been rotated through an angle
¢ about the origin. At first glance, it might appear that N (¢) parametrizes an ellipse
that is parallel and tangent to the original (FIGURE 1). Is it actually an ellipse? We
answer this question by finding the horizontal lines that intersect the rotated ellipse
exactly once and using this information to eliminate the parameter, ¢. The remainder
of this exposition is devoted to answering other geometric questions arising in this
context. We find the Cartesian equation that describes the paths traced out by the right-
most and left-most points of the rotated ellipse (E(¢) and W (¢)), and we study the
line segments connecting these points. The relationship between the original ellipse
and the curves parametrized by N, S, E., and W is investigated, and the golden mean
makes a surprise appearance.

Counter-clockwise
Rotation

Figure 1  Tracking the high point

Description of the extremal curves Choose ¢ > ¢ > 0 and set b° = a> — ¢>. Then
the ellipse x2/a”> + v2/b*> = 1 is centered at the origin, its major axis is parallel to
the x-axis, and its foci are at (£c, 0). If the ellipse rotates through ¢ radians about
the origin, its foci will be at (¢ cos(¢). ¢ sin(¢)), and all points (x, v) on the ellipse
satisty

V(x = ccos(@)? + (v — csin(@))?
+ \/(,\‘ + ccos(@))’ + (v + ¢sin(@))? = 2a. (1)

With a little algebra, we can rewrite (1) as
(a® — ¢*cos” @)x° — (2¢7 cos P sind)xy + (a* — ¢*sin® @) v = a’b’. (2)

Of course, when ¢ = 0, this reduces to x*/a*> + v /b* = 1.



VOL. 77, NO. 1, FEBRUARY 2004 57

The key to finding the locus of the moving point N(¢) is the fact that a horizon-
tal line through N (¢) (or though the lowest point, S(¢)) intersects the ellipse exactly
once. Hence, we examine the intersection of the rotated ellipse with lines of the form
y = h by substituting y = h into (2). This yields a quadratic equation in x with dis-
criminant A = 4a’b*(a® — ¢*cos® ¢ — h?). This has a unique solution exactly when
A = 0, which means h = +./a? — ¢? cos? ¢. After determining the corresponding val-
ues of x from (2), we see that

2 .
N(p) = <_CM_ . Va2 — c2cos? ¢) . 3)

a? —c*cos? ¢

and S(¢) = —N(¢). To find the Cartesian equation of the curves parametrized by N
and S, we eliminate the parameter from (3). Writing N(¢) = (x, y), we do a little
algebra to find an equation for the desired locus,

(S}

X2y = (@* — yH(y = bY). 4)

Similarly, one can find the right-most and left-most points, E(¢) and W(¢), by in-
tersecting vertical lines with the rotated ellipse. Eliminating the parameter from the
resulting coordinate expression for E(¢) yields

x2y2 = (@’ — xXH(x? = bY). 5)

The reader will note that equation (4) answers our earlier question: the curve parame-
trized by N is not an ellipse because its equation has degree 4. But then what kind of
curve is it? The curve parametrized by N is symmetric with respect to the y-axis, and
its v-intercepts are at v = «¢ and v = b. Consequently, the only horizontal line about
which this curve could be symmetric is y = (a + b)/2. We investigate the possibility
of symmetry by finding the curve’s right-most point. If this extremal point is unique,
it will have to lie on the line of symmetry. Begin by rewriting equation (4) as

: ) ab\*
x“=(a—-b)y— (y — ——) . (6)

_\"

From equation (6) it’s clear that |x| is largest when y = Vab. Since 0 < b < a, the
geometric mean is below the arithmetic mean, so the curve parametrized by N is not
symmetric about any horizontal line. The same argument applies to the curve parame-
trized by S.

The curves parametrized by N and S will always be tangent to, and outside the
original, unrotated ellipse. However, the relationship between the original ellipse and
the £ and W extremal curves is more interesting. In particular, when is the highest
point of (5) inside, on, or outside the original, unrotated ellipse?

Intersections of the unrotated ellipse and the extremal curve parametrized by E, if
there are any, can be found by combining (5) and the equation x?/a’ + y?/b* =1,
where x > 0. We solve the latter for y? and substitute into (5) to find

’)bz 2 i 2 2 2 2
x*—=(@ —x7)=(a —x)x"—b)
a2

so thatx = a or x = ab/~/a* — b%. We know that x < a so, if these two curves in-
tersect at some point other than (a, 0), it must be that ab/va*> — b? < a, whence
b < a/~/2. We conclude that the extremal curve parametrized by E intersects the un-
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rotated ellipse at (a, Q) and

(7

ab ib«/cﬂ—Zlﬂ
VaZ =T Jaz—p? )’

Note that (7) reduces to (a, 0) exactly when b = a/ﬁ.

Equation (5) can be written in the form of (6), from which it follows that the highest
and lowest points of the right extremal curve occur at (v/ab , + (a — b)). Comparing
these coordinates to (7), we see that the highest and lowest points occur inside, on, or
outside the original, unrotated ellipse according as a/b is less than, equal to, or greater
than (+/5 + 1)/2, the golden mean.

Extremal secants After a nontrivial rotation, the line segments that connect the high-
est to the lowest, and the right-most to the left-most point of the ellipse do not remain
orthogonal. How close together do they come?

We will designate the line segment connecting the highest to the lowest as [, and
the line segment connecting the right-most to the left-most point as /,,,. Because [,
and /,,, pass through the origin, equation (3) tells us that

Lis = {(x, y) : (ctcospsing)y = (a* — ¢? cos? ¢)x} . ®)

Equations describing /., are similar. Let us designate the angle between /., and [,
by 6. In order to express 6 in terms of the rotation angle, ¢, we use the formula for
the tangent of the difference of two angles. After some algebra, with the slope of /,; as
tan « and the slope of /,,, as tan B, this identity gives us,

0 = tan™' ( 22’ >
B (a* — bYsin(29) )

This angle is minimized when ¢ = %. Note that, for fixed ¢ € (0, Z), 0 increases
monotonically from 0 to 7 as b increases from 0 to a.

Furthermore, if 6; and 6, are the angles formed by the major axis of the ellipse with
the extremal secants /,,, and [,;, respectively, one can show that

b*t b?
0, = tan”! < aznd)) and 6, =tan”! ( 5 > .
a a“tan ¢

Of course, 6, + 6, = 0. Also, ifa = b, we see 6; = ¢ and 6, = % — ¢, as expected.
It is interesting to note that, before rotation, [, (resp. l.,,) bisects any horizontal

(resp. vertical) secant of the ellipse. This property is retained after rotation, as the

following calculation shows: Suppose —b < h < b. By substituting y = & into (2)

and solving the resulting quadratic equation for x, we find that the points on the ellipse
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Figure 2 Extremal secants

with ordinate y have abscissa

(¢’ cos @ sinp)h + aby/a® — 2 cos? ¢ — h?
X = '
a’ —c?cos’ ¢

)

If we also substitute y = A into the defining equation of /,, (see 8), we find that

he? cos ¢ sing
= ——
a? —c2cos? ¢’

and this value is exactly half way between the values calculated in (9). A similar cal-
culation shows that /., bisects any vertical secant of the ellipse. In fact, since ¢ is
arbitrary, if parallel lines L, and L, are tangent to the ellipse at P, and P>, respec-
tively, the secant of the ellipse connecting P, and P, bisects any secant that is parallel
tol;.

A connection to probability Suppose X and Y represent the heights of the husband
and wife in a married couple chosen randomly from a population of such couples. It
may of interest to consider the distribution of heights of wives who are married to men
of a specified height. This distribution is called a conditional distribution of Y given
the value of X, and its mean is referred to as a conditional mean.

We will denote the probability that X € [x,x + Ax] and Y € [y, y + Ay] by
Px < X <x+4+ Ax,y <Y < y+ Ay). Suppose that P(x < X < x + Ax,
vy<Y <y+4+ Ay) = f(x,y)AxAy and that equality is achieved in the limit as
Ax and Ay tend to zero. Then we say that f is the joint probability density function
of the random vector (X, Y).

Random vectors such as those from the above example are often modeled by the
bivariate normal distribution. The joint probability density function of this distribution
is given by

1 -y
f(x, _V) = ———E‘Q('\'-‘),
20,0, 1 — p?
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() () () + ()

2(1 = p?)

where

gly.y) =

and ey, 4. af. o\’ and p are the mean of X, mean of Y. variance of X, variance of Y,
and the correlation coefficient of X and Y respectively. (The correlation coefticient is
a measure of the linear association between X and Y.) The graph of f is a bell-shaped

surfac 3) and. for ¢ s = : (x.v) =kis
surface (FIGURE 3) and. for any £ € (0 me\m] the level curve f(x.y) = kis

given by the ellipse

() ) (e
(oS Oy Oy O—'\.

where ¢ = =2(1 — p?) In2mko,0,\/1 — p*). FIGURE 3 depicts the graph of f and its
intersection with a pair of horizontal planes (which result in the ellipses described by
equation (10)) when 1, = 64. ., = 69, 0, = o, =3, p = 0.6. It is well known [1]
that the conditional means of this joint probability distribution are linear (the so-called
population regression lines) and are given by

)=, + 25X =0 and E(X) =y + 22 — 1),

X O,

It is easily checked. using arguments similar to those given previously, that Ey(Y)
intersects the level curve described by (10) at its right-most and left-most points, and
Ey (X)) intersects this level curve at its highest and lowest points. That is, the graphs of
Ey and &y are exactly the extremal secants of the rotated ellipse!

0.02
0.015
0.01 {

0.005

Figure 3 The graph of z = f(x. y)

Acknowledgments. The authors wish to thank Dr. David Farnsworth for his helpful comments.
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A Question of Limits
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While reviewing a draft of an assignment I was about to give to a multivariable calculus
class, it occurred to me that all of the limit problems involved rational functions. In a
moment of what I would like to call inspiration, I decided to add a twist to a familiar
problem. A standard topic in the first semester of calculus is a demonstration that

sin x

lim =
=0 X

A natural generalization of this limit is

. sinx +siny
lim —. (1
(x.x)=>(0.0) xX+y

v 0

The assignment I gave to my calculus class was to determine if (1) exists and to eval-
uate the limit if it does.

The purpose of this note is to discuss why is (1) an interesting limit, and to sug-
gest that a broader range of problems can be investigated by students at various levels.
Limits are one of the staples of single-variable calculus courses, yet the treatment of
limits in multivariable calculus tends to be rather minimal. When considering singu-
larities, many standard texts such as Stewart [6] deal almost exclusively with rational
functions. This is also the case with many advanced calculus texts |2, 4, 8]. Undoubt-
edly, the increased complexity of limits in multiple dimensions partially accounts for
the sparse treatment. However, there are many interesting mathematical questions re-
garding multivariable limits suitable for exploration by undergraduates.

How does one evaluate the limit in (1), provided, of course, that it even exists?
Some of my students suggested that a graph such as FIGURE 1(a), produced by Maple,
suffices. On the other hand, another software package, Matlab, produced the image in
FIGURE I(b) (the contours of the graph are plotted in the xy plane). This definitely
gives a different view of the limit.

Given the discrepancies in the images, it isn’t clear that either figure suffices to
show, even at an intuitive level, that (1) exists.

There are several rigorous ways to evaluate the limit. One of the most elegant is to
make the change of variables x = u + vand y = u — v. Then

. sinx + siny . sin (u + v) + sin(u — v)
lim —= = Ilim
=00  x+y (1,v)~>(0,0) 2u
x+y#0 u#0
. 2 sin(u) cos(v)
= lim — =1 2)
(u.v)—(0.0) 2u

u7#0



62 MATHEMATICS MAGAZINE

v AL205

(b)
Figure T Two renderings of the same function graph

Another possibility istolet z = —v, so
sinx + siny ) sinx — sin(—y)
im ——= Iim —mWm— =~
=00 x4y (=00 X — (=)
x+v#E0 A+v#EQ
) sinx —sinz
= lim ————
(x.2)=(0.0) X =2
XNFEZD
=sin’(0) = cos(0) = 1. 3)

Equating the limit with the derivative is natural, but does require some justification
(see Theorem 3 and Example 3). It may be noted that the method of (2) employs the
addition formula for the sine, while the method of (3) uses only the fact that the sine
function is odd and a definition of the derivative.

Generalizing the result Based on the results of (2) and (3), one might suppose that
(1) could be generalized in a fairly obvious way.

A Question: [f lim,_ £ = 4, does

Ry

im OO @
(x.)=(0.0) x+y

x+v0
We can observe that both of the iterated limits are equal to a:

. foO+f» o f)y+0 o f+0 L f)+ F)
lmIim———=Im~— =Im~——— = Iim lm ——.

= Im
=0 v—0 xX+y —0 x+0 =0y + 0 ry—=0x—0 X+ y

This might suggest that it would be relatively simple to prove that the limit is a. How-

ever, if f(x) = x?, the limit in (4) does not exist, as the following counterexample
shows.

2.2 .
COUNTEREXAMPLE. lim(, ,_ 0.0, % does not exist.
r+vE0 C
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Proof. Consider the case when x = 0, so that one approaches the origin along the
y-axis. Then lim,_, + = 0.
Now let x = t? 4+t and y = t> — t. Then, provided ¢ # 0,

Xy P+ D41

=-[et+1)+@—-1)7°
Ty 57 2[(+)+( )]
Since lim, .o 3 [(/ + 1)? + (¢ — 1)?] = 1 # 0, this establishes the counterexample.
|

Observe that a graph of 7z = % near the origin, such as the one produced with
Matlab in FIGURE 2, doesn’t demonstrate conclusively whether the limit exists or
not. This example demonstrates that one cannot always trust the output of computer

packages.

60 |

60 ]

Figure 2 A misleading image

So when does (4) hold? Observe that sin(x) is odd, while the function f(x) = x? is
even. This suggests the following somewhat surprising result.

THEOREM 1. [If lim,_, @ =ay, and f is real analytic at 0, then

S+ f(y) _

(x.v)—(0,0) x+y
X+ v#0

a) (5)

if and only if f is an odd function.

The proof relies on the fact that f(x) may be represented as a power series, that
x2#+1 4 y2F1 g divisible by x + y, and that we may generalize our counterexample.

Proof. Observe that lim,_o f(x)/x = q, implies f(0) = 0. Since f is real ana-
lytic, for some r > 0, f(x) = Y - , a,x" whenever |x| < r.

n=

Suppose f is an odd function. Then ay; = 0, for all kK € N. Thus,

o0

2%+

fx) = ZCI:HIX *
=0
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for |x| < r, and hence, for |x| < r, |y| <7,

f(x) +f(y) o 2k+1 _}_),2k+1
E Q1 — -
x+y = x+y

Let po(x, y) = x%* — x%1y + .. — xy%*~1 4 y% Observe thatif x + y # 0, then
pau(x, y) = (x4 y*+Hy /(x + y). Thus,

f(X)+f())

6
X1y 1+Zazk+1 Do (x, y). (6)

k=1
If p < r, with |x| < p/2and |y| < p/2, then

2k + 1)p*

2k
| P2, Y| < 2k +1) (%) ==

Because 0 < (2k + 1)/4* < 1and p < r, D 0, las+11(2k + D p* /4% < oo. There-
fore, by a version of the Weierstrass M-test [7, p. 141], Z;“;l ay+1 pa(x, y) is abso-
lutely convergent. Since po(x, y) is continuous in R?, with py; (0, 0) = 0, it follows
that

lim " ay1 pu(x, y) = 0. (7
1

(x,y)—(0.0) o

Thus, (5) follows from (6) and (7).
Now assume that (5) is true. Observe thatif |x| < r and |y| < r,

xX)+ f( - 2k+)2k
% +Za2k+1p2k(x ))+Zazk .

From (5) and (7), it follows that

00 2k 2k
X +y
lim a2k—)— =0. (8)
(x,3)=(0.0) 4= xX+y
x+y#0

The proof of the theorem will be complete with the following claim.
CLAIM. Ifthe limitin (8)is O, then ay, = 0forallk € N

Proof of the claim: Let kg be the least value of k for which ay; # 0. Modifying the
approach of our earlier counterexample, for t > 0, let x(¢t) = * +t and y(t) = t* — ¢,
where & > 0 will be determined by ky. Then, (x* + y%*)/(x 4+ y) = g (t), where

[Q“"ﬁ—l)%-+-0”"—~l)%].

From (8) it follows that lim,_, o+ Z,‘(’i] ay. gar(t) = 0. However, if o = 2k,

2k—a

t
gu(t) =

Zazk gu(t) = B [( 17! 4 1)2k0 + (0!~ 1)2k0] + Z axy gu(t).  (9)

k=1 k=ko+1

Fort > 0,0 < gy (1) < ((t + 1)) /t*. Since lim,_, o+ ((t + t%)?)/t* = 0 uniformly
in k for k > ko, the absolute convergence of Y;°, ., ax x* in a neighborhood of 0
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implies

o0
lim+ Z a8 (t) = 0.
t—0 k=ko+1

From (9), we may conclude that

>0

o0
. . Ay _ 2k o 2k
1 E z:lm—o[tz"01 1) 4 (1207t 1 ”]: .
Jim 2 ay gu(t) = hi > ( +1)7° 4+ ( ) az,

This, however, contradicts (8). Thus, a,;, = 0 for all k € N. [ ]

EXAMPLE |. If f(x) = sin(x), then Theorem | immediately yields

. sSinx —+ Sin y
lim @ — =
(x,y)=>(0.0) xX+y
x+y#0

EXAMPLE 2. If f(x) = ¢ — I, then £(0) = O, lim f(x)/x = 1, but

. et +e =2
Iim @ ———
(x.3)=>(0.0) X +y
x+y#0

doesn’t exist, because f is not odd.

The strong derivative Theorem | states that if f is real analytic and the other hy-
potheses hold, then

i S+ f(y)

1m —_—

(x.v)=>(0.0) xX+y
x4y #0

exists only if f is odd. If f is an odd function, can the condition that f is real analytic
be relaxed? We shall address this question in Theorem 3 below, which employs an
alternative definition of the derivative.

Suppose that f is an odd function. As in (3), let z = —y. Then
: O+ f») . fx) = f@@)
lim ——=lim ——F7-——.
(x,y)->(0,0) x+y (x,2)->(0.0) X —z
x+y#0 X#z

This leads to the definition of the strong derivative f*(x) by

frow=gim TOZIE
(x,:)ﬁ;fo-m) X =2

when the limit exists. Bruckner and Leonard [1] attribute the definition of the strong
derivative to Peano [5], who is well known for his axioms for the natural numbers.
Esser and Shisha [3] show that if f*(x) exists, then f*(x) = f’(x); that f*(x) is
continuous on its domain of definition; and provide necessary and sufficient conditions
for the existence of the strong derivative. They also give an easily checked sufficient
condition for the existence of the strong derivative [3]:
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THEOREM 2. If ' is continuous at a point x, then f is strongly differentiable
ar xg.

The definition of the strong derivative and Theorem 2 immediately yield Theorem 3,
which extends the results of Theorem 1 in one direction.

THEOREM 3. If f is an odd function, f(0) =0, f'(0) = a and f'(x) is continuous
at 0, then

im LSO ) 2 o) =
(x.x)—(0.0) X+y
x4v#£Q

EXAMPLE 3. If f(x) = sin(x) then (2) follows immediately from Theorem 3. The-
orem 2 may also be applied at points of the form (x,, —xy), yielding
. sin(x) + sin(y)
lim ———— = cos(xp).
(x.y) = (xg.—xq) X ‘I" _\'
X4 v£0)
Hence, the function

sin(x) + sin(y)

ifx # —y
glx,v) = x4y
cos(x), ifx =—y
is a continuous extension to all of R> of 7 = w The function g(x, y) can

be shown to be differentiable, since the partial derivatives exist and are continuous.
Thus, FIGURE 1(b) is a more accurate depiction of the behavior of the function than
FIGURE 1(a).
EXAMPLE 4. If f(x) = cos(x), then Theorem 2 yields
cos(x) — cos(y) — _sin(0) = 0.
(x. )= (0.0) X =Yy
XFEY

This isn’t exactly obvious from a graph such as FIGURE 3.

0.54 p
l,' i ) :
'llll/l'¢’ (X) Bl “‘ N
o M
RO S
SIEEEK XX
a1 :“&3"‘:3' 0 ‘0’0’,;,;.:“::3;:};,

473

Figure 3 An uninformative image
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Higher dimensions Since we can evaluate (1) as a limit in two dimensions, it is
natural to inquire whether similar results hold in higher dimensions. For example,
does
sin(x sin sin
i Sn@) FsinG) +sin@) 10,

(x,y,2)=(0,0,0) X+y+z
X+y+z#£0

Interestingly, the limit on the left-hand side of (10) does not exist, as the following
theorem shows.

THEOREM 4. [f lim,_,, M =ay, and f is real analytic at 0, then
i SO W@ 0
(x,y,2)—>(0.0,0) X+y+z
x+y+z£0

ifand only if f(x) = a,x.

Much of the proof of Theorem 4 is analogous to Theorem 1, so only a brief sketch
of the proof will be provided.

First, if f(x) = a,x, then (11) follows trivially. Now assume that (11) holds, and
that f(x) = Z” , a,x" in a neighborhood of 0. If z = 0, then (11) reduces to (9),
which allows us to conclude that a =0 forallk e N. Letx =y =¢* —r,and z =
t* 4+ 2t,fort > 0. Then

fOO) + f@) + f=a) e PRI -
O L0+ 20 =art 3 Q-1+ +2) )+;azA+|h2k+|(1),
where

2( [)2/\+1+(t +2t)21\+l

Mg (t) = 9

As in the proof of Theorem 1, it may be shown that lim,_, o+ Zf; Ay hopy (1) =0,
leaving

fx@)+ f@)y+ f(Z(t))

lim + 2a
10+ x(t) + y(t) + z(t) a -

However, if (11) holds, then a; = 0. A similar argument, changing the highest power
in the parameterization of x, y and z, shows as = 0, and so on. [ ]

From Theorem 4, we immediately obtain

THEOREM 5. If lim,_o f(x)/x = @, and [ is real analytic at 0, then, for integer
n>3,

. f(xl)+f(x2)+-~-+f(xn)
lim =q
(X1.X25e0ix)— (0,0,...,0) X1+ x4+, ..., X,
xXp+x0+, . ,xy #0

ifand only if f(x) = ax.

Conclusions and suggestions Limits in R* and R” can be a source of interesting
and sometimes counterintuitive problems. Many of the results of this note can be read-
ily used at the undergraduate level. Students in a multivariable calculus course may
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certainly be asked to evaluate (1), possibly with aspects of (2) and (3) given as hints.
Using the counterexample as a model, students may be guided to conjecture Theo-
rem 1, although the proof of Theorem 1 would be more appropriate for a course in
advanced calculus or elementary analysis. The strong derivative can be used to revisit
the definition of the derivative, and build on earlier concepts of the meaning of the
derivative. To show that Theorem 1 cannot be extended to higher dimensions, the pa-
rameterization given in the outline of the proof of Theorem 4 may be used to show that
the limit of the left-hand side of (10) doesn’t exist.

Acknowledgments. The author wouldlike to thank Peter Jarvis, Warren Johnson, and the referees for their many
useful and helpful suggestions.
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70 Years Ago in the MAGAZINE (called, at that time, The Mathematics
Newsletter)

From “Improving the Teaching of College Mathematics,” by May M. Beenken,
Vol. 8, No. 5, (Feb., 1934), 97-103:

In order to keep mentally alert, the college teacher of mathematics should
himself [sic] be working and learning constantly. We may well harken to
the words of J. W. Young in his retiring presidential address to the Mathe-
matical Association of America. He said, “The sin of the mathematician is
not that he [sic] doesn’t do research, the sinis idleness, when there is work
to be done. If there be sinners in my audience, I would urge them to sin no
more. If your interest is in research, do that; if you are of a philosophical
temperament, cultivate the gardens of criticism, evaluation, and interpreta-
tion; if your interest is historical, do your plowing in the field of history; if
you have the insight to see simplicity in apparent complexity, cultivate the
field of advanced mathematics from the elementary point of view; if you
have the gift of popular exposition, develop your abilities in that direction;
if you have executive and organizing ability, place that ability at the dis-
posal of your organization. Whatever your abilities there is work for you
to do,—for the greater glory of mathematics.” And may I add, “Whatever
you do, do it for the greater glory of teaching, which is the chief purpose
for which you are employed.”

The editor hopes that those evaluating the scholarly achievement of faculty today
will reward all the various types of endeavor advocated by Young.
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lowa State University

Assistant Editors: RAZVAN GELCA, Texas Tech University; ROBERT GREGORAC, lowa
State University;, GERALD HEUER, Concordia College; VANIA MASCIONI, Ball State Uni-
versity; PAUL ZEITZ, The University of San Francisco

Proposals

To be considered for publication, solutions should be received by July 1, 2004.
1686. Proposed by Shahin Amrahov, Ari College, Turkey.

Find all positive integer solutions (x, y) to the equation

2y* = x* 4 8x7 + 8x? — 32x + 15.

1687. Proposed by Sung Soo Kim, Hanyang University, Ansan Kyunggi, Korea.

A two-player game starts with two sticks, one of length n and one of length n + 1,
where 7 is a positive integer. Players alternate turns. A turn consists of breaking a stick
into two sticks of positive integer lengths, or removing k sticks of length & for some
positive integer k. The player who makes the last move wins. Which player can force
a win?

1688. Proposed by Mihai Manea, Princeton University, Princeton, NJ.

Let p be an odd prime, and let P(x) = ay + a;x + ax> + --- +a,_1x""" be a
polynomial of degree p — | with integral coefficients. Suppose that p { (P (b) — P (a))
whenever a and b are integers such that p { (b — a). Prove that p | a,_,.

1689. Proposed by Ali Nabi Duman, student, Bilkent University, Ankara, Turkey.

Triangle ABC is a right triangle with right angle at A. Circle C is tangent to AB
and BC at K and N, respectively, and intersects AC in points M(# A) and P, with
AM < AP. The line perpendicular to BC at N intersects the median from A, the circle
C, and AB in points L, F, and E, respectively. Prove that if FL/EF = LN/EN, then

a. K, L, and M are collinear.
b. cos(2/ABC) = EA/EK.

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected,
succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet.

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of Mathe-
matics, Iowa State University, Ames IA 50011, or mailed electronically (ideally as a IsTgX file) to ehjohnst@
iastate.edu. All communications should include the readers name, full address, and an e-mail address and/or
FAX number.
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1690. Proposed by Costas Efthimiou, Department of Physics, and Peter Hilton, De-
partment of Mathematics, University of Central Florida, Orlando, FL.

Prove that there exist functions f : R — R that satisfy

flx=fo»m)=rfx)+y

for all x, y € R, and show how such functions can be constructed.

Quickies

Answers to the Quickies are on page 75.

Q937. Proposed by Bill Chen, Philadelphia, PA, Clark Kimberling, Evansville, IN,
and Paul R. Pudaite, Glen Ellyn IL.

Let n be a positive integer. Prove that

Z;L%JF%J_Z,:L%J:"

Q938. Proposed by William P. Wardlaw, U. S. Naval Academy, Annapolis, M D.

Let R be aring, let G be a finite subset of R that forms a multiplicative group under
the multiplication of R, and let s be the sum of the elements of G. Prove that if G has
more than one element, then s is either zero or a zero divisor in R. Give examples in
which s is a nonzero divisor of zero.

Solutions

A Square Bound February 2003

1662. Proposed by Erwin Just (Emeritus) and Norman Schaumberger (Emeritus),
Bronx Community College of the City of New York, Bronx, NY.

Let x;, | < k < n, be positive real numbers with Y ;_, x,f"_l < n. Prove that
n 2
Dok —Dxi < n.

L Solution by Michael G. Neubauer, California State University, Northridge, CA.
Bernoulli’s Inequality states that if » > 1 and x > 0, then x" — | > r(x — 1). Re-
place x by x, and r by 2k — 1, then do some rearranging to obtain

2k — Dxp < xPF T —1+@Qk—1).

It follows that

Y k—Dx <) T —n+ ) Qk—D<n—n+nt=n’
k=1 k=1 k=1
II. Solution by Heinz-Jiirgen Seiffert, Berlin, Germany.
We prove the following generalization:

Let I be a real interval containing 1 and let f, : I — R, 1 < k < n, be dif-
ferentiable and convex on I. If ¢ is a real number, and x; € I, 1 < k < n, with
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ZZ=| fi(xx) < c, then

Y RHx < e+ Y (F) = fiulD),
k=1 k=1

The result in the problem statement follows by taking fi(x) = x%*!

(0, 00), and ¢ = n.
To establish the generalization, first observe that for 1 < k < n, the function g,
defined by g (x) = f/()x — fi(x) satisfies

, xp €1 =

g(x)=0 xeland x < 1

g(x)<0 xelandx > 1,

$0 gx(x) < gx(1) forall x € 1. Hence

Y Hxe = e+ Y (fiDx — fibw)
k=1 k=1
=c+ Y @) <c+ Y gl =c+ Y ()= fill).
k=1 k=1 k=1

Also solved by Reza Akhlaghi, Tsehave Andebrhan, Michael Andreoli, Carl Axness (Spain), Michel Bataille
(France), Jean Bogaert (Belgium), Cal Poly Pomona Problem Solving Group, Minh Can, Mario Catalani (ltaly),
Con Amore Problem Group (Denmark), Knut Dale (Norway), Daniele Donini (Italy), Robert L. Doucette, Peter
Drianov (Canada), Aaron Dutle, FGCU Problem Group, Ovidiu Furdui, G.R.A.20 Problems Group (Italy), Julien
Grivaux (France), Enkel Hysnelaj (Australia), The Ithaca College Solvers, Steve Kaczkowski, Achim Kehrein
(Germany), Murray S. Klamkin (Canada). Elias Lampakis (Greece), Kee-Wai Law (China), Northwestern Uni-
versity Math Problem Solving Group, Albert D. Polimeni, Rob Pratt, Phillip P. Ray, Rolf Richberg (Germany),
Joel Schlosberg, Harry Sedinger, Achilleas Sinefukopoulos, Nicholas C. Singer, John W. Spellmann, Nora Thorn-
ber, Dave Trautman, Chiu Wenchang and Magli Pierluigi ({talv), Michael Vowe (Switzerland), John T. Zerger, Li
Zhou, and the proposers.

Much Ado About Nothing February 2003
1663. Proposed by Michel Bataille, Rouen, France.

Let m and n be integers such that 1 < m < n + 1. Evaluate

Gt 2rm \ ¢ Tm T
- k-1
Z (k + 1) sin <n+l>H<C0t<n+l>—C0t<kﬁ>>

k=1 j=1

Solution by Chu Wenchang and Di Claudio Leontina Veliana, Universitadegli Studi di
Lecce, Lecce, Italy.

The sum is equal to 0. To prove this, we establish the more general result that for
any real 0,

n+1 k . .
o jr sin(n + 1)6 |
k+ 1)sin*~' (20 (coté) — cot ) =t~ cos"tlo. 1
;< ) ),-Ul e o (1)

Setting & = mr /(n + 1), we see that the sum in the problem statementis 0.
Because

k41

, sin>*! 9 cost %/ g,
2+ 1

sin((k + 1)6) =Im((cos @ + i sin6)* ') = Z (—1)/’<
0=j=<k/2
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it follows that sin(k 4+ 1)6/sin**' @ is a polynomial of degree k in cotf with lead-
ing coefficient k + 1. The polynomial takes the value O if and only if cotf =
cot(jm/(k +1)),1 < j <k so

sin(k + 1)6 k < jn
—_— = cotf — cot

(k + 1)sin“*'g }:[1 k+1
Hence the left-hand side of (1) is equal to

n+1 . n+l
k+10 1

S sin1 (20) AL DO Y25 sin(k + 1) cos* ' 6

=l sin"" 0 =

sin® 6

e2if n+l » -
= Im (2e"” cosB)*~
sin® 6 ;

e2i9 1— 2n+]e(n+l)i9 COS”+] 0
- sin® @ 1 — 2¢i? cos 6

1 )
= —— 29 Im (1 _ 2n+]e(n—+—l)16 COSn+l 9)
Sin
sin(n + 1)0
= 2"“———(' 7 ) cos" ' 6.
sSin

This completes the proof of (1).

Also solved by Tsehaye Andebrhan, Daniele Donini (Italy), Ovidiu Furdui, Rolf Richberg (Germany), Michael
Vowe (Switzerland), Li Zhou, and the proposer.

LCM Divisors February 2003

1664. Proposed by Tim Ferguson, student, Linganore High School, Frederick, MD,
and Lenny Jones, Shippensburg University, Shippensburg, PA.

Given a positive integer n, a sequence A, A,, ..., A; of positive integers is called a
partition of n if Z';:, A; = n. Given a partition 77 : Xy, A, ..., A, of n, let LCM(rr) =
LCM(A,, Ay, ..., A), and define

M, = max { LCM(r) : & apartition ofn}.

Let p be a prime such that p? divides M, for some integer a > 3. Prove that if g is a
prime with p < ¢ < p®~', then q divides M,.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO.

Fix n and let 7 : Ay, X5, ... A, be a partition of n for which LCM(xr) = M,,. Let p
be a prime such that p¢ divides M, with a > 3. Without loss of generality we may
assume that p® | A4, so A, = p“t for some positive integer ¢. Let g be a prime with
p < q < p°~!', and suppose that g does not divide M,,. Then

Pt 4 gt < 2p*7't < pot.
Thus there is a positive integer / > k so that the sequence i, U, ..., u; defined by

Aj ifl<j<k-—1
plt ifj=k

qt ifj=k+1

1 ifk+1<j<l

Hj =
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is a partition of n. But then
LCM(:LLh U2y ey //Ll) =LCM (LCM(}"I’ cee )‘-k—l)v pﬂ_]tv q[)
= LCM (LCM(A, ... 1—1), p* 't q
=¢q-LCM (LCM(Ay, ..., 24—1), p* ')

M,
Z q_ > Mny
p

contradicting the definition of M,,.

Also solved by Roy Barbara (Lebanon), Jean Bogaert (Belgium), Con Amore Problem Group (Denmark),
Daniele Donini (Italy), Robert L. Doucette, Kathleen E. Lewis, Reiner Martin, Bill Mixon, Rolf Richberg (Ger-
many), Joel Schlosberg, Achilleas Sinefakopoulos, Li Zhou, and the proposers.

An Acute Inequality, Occasionally Obtuse February 2004
1665. Proposed by Mihaly Bencze, Brasov, Romania.

Let M be a point in the interior of triangle ABC and let P, Q, and R be the projec-
tions of M onto BC, CA, and AB, respectively. Prove that

2.2 A » .02 B > .- C 2 2 2
MA~ sin §+MB sin 5+MC sin ESMP + MQ” + MR".

Solution by Robert L. Doucette, McNeese State University, Lake Charles, LA.

The result is not true as stated. In all that follows,we assume that A < B < C. In
order to better describe the conditions under which the result does hold, define the con-
stant Cy = 2 arcsin((1 + m)/()) ~ 100.28°, and the function Ay : (/2. Cy] - R
by

Ao(C) =

(hH

7 —C $in(C/2) \/( Sin(C/2) )3 L reose
2

— arccos | —
secC +3 secC + 3 2

We show that the inequality in the problem statement holds only in the following cases:
(1) ifC <m/2
(1) ifr/2 < C <Cpand Ap(C) < A < (m —C)/2.

Let x = MP, y = MQ, and z = MR. Referring to the inequality in the problem
statement, let A be the expression obtained when the left-hand side is subtracted from
the right-hand side. We first show that

_ _ 2é Y _,zﬁ N2 _ 2£ N2
4A_<l tan 2)() &,)+<1 tan 2)(z x)+<l tan 2>(x V)~

(2)
Note that this immediately establishes the result in case (i).

Because ZAQM and ZARM are right angles, points A, R, M, and Q all lie on a
circle with diameter MA. If M and A lie on opposite sides of OR, then the sum of the
measures of the arcs intercepted by ZA and ZOMR is 360°. It M and A are on the
same side of OR, then OR subtends both the supplement of ZA as well as ZOMR.
In either case, we conclude that ZOMR = 180° — ZA. Applying the Extended Law
of Sines to AQMR, we obtain QR = MAsin A. Applying the Law of Cosines yields
OR* = y? + 72 + 2yz cos A. Combining these two equations and using some standard
trigonometric identities we obtain
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A 1 A 1 A 1
MA%sin? 2 = 2 (1 +tan? 2 e vz = —tan? Sy — )2 4 —(v 2
sin 5 4( + tan 2)(y )"+ yz 1 an 2() 7) +4() +2)

Using analogous formulas for MB? sin’ g and MC? sin? %, the left hand side of the

inequality in the problem statement becomes

2

A B C
3—1<tan2 E(y — 72)* + tan? E(X —2)? +tan® E(X —-y)

(3)
+Oy+ 2+ @ +x)?+x+ y)z>.

The right-hand side, x*> + y* + z2, is equal to

1
0=+ @=0"+x =N+ O+ @+ +YY). @

Subtracting (3) from (4) gives (2).
Now assume that 7/2 < C, and for convenience, let t (o) = 1 — tan®(a/2). With
some algebra (including quadratic forms), we obtain

4A = r(cosO(y —z) —sinf(z — )c))2 + Xo(8in6(y — z) + cos6(z — x))z,

1 21(0)
where 6 = 3 arctan(t(B)_f(A)

choices, respectively, in

), and A and X, correspond to the plus and minus sign

t(A) +1(B) +2:(C) + \/(z (A) — 1(B))” + 41(C)?
; :

If we fix C, we may consider A; and X, as functions of the single variable A. It is not
difficult to show that A, (A) > 0 and X, (A) is increasing for 0 < A < (7 — C)/2.

It follows that 1 (C) = max{A,(A) :0 <A< (x —C)/2} =t(w —C)/2+2t(C).
The function p is decreasing on (w/2, w). Because limc_, .+ n(C) > 0 and
lime_ .- n(C) = —o0o, u has a unique zero in the interval (w/2, 7). With a bit
of effort, it can be shown that the value of this zero is Cy, the constant defined earlier.
If Co < C < m,then A,(A) < Oforall0 < A < (x — C)/2.

Now consider the case in which 7/2 < C < Cy. Because A,(A) is an increasing
function of A and limy_,o+ A,(A) < O, there is exactly one A € (0, (x — C)/2) such
that A,(A) = 0. Finding this requires some effort; the solution, Ag = Ag(C), is given
in (1). If C € (x/2, Co] and A € [Ay, (wr — C)/2], then A, > 0 and the desired in-
equality holds for any M in the triangle. If C € (w/2, Cy] and A € (0, Ap), then
)»z(A) < 0.

If A, < 0, then we may exhibit a point M for which the desired inequality does not
hold. First observe that 6 € (0, r/4]. Let r be the inradius of AABC and a, b, c the
lengths of the sides opposite A, B, C respectively. There is a one-to-one correspon-
dence between points M in the interior of AABC and triples (x, y, z) of positive real
numbers such that

ax +by+cz=(@+b+or. ®)

To find a point M such that A < 0, it suffices to find a positive triple (x, y, z) #
(r, r, r) satisfying (5) and with cos 8 (y — z) — sinf(z — x) = 0. We seek to determine
appropriate values of k and z with x = z — kcos 8 and y = z + k sin6. We then have

ax+by+cz—(a+b+cyr=@+b+c)(z—r)+ (bsinh — acos O)k.
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If bsin —acosé =0, thenletz =r and k =r/(2cos6). If bsind —acosf # 0,
then choose z sufficiently close to r so that

at+b+c z at+b+c
—_—(r— , and ch k= —————(r —2).
bsin@—acosG(r 2 < cos and choose bsinf —acosO(r 2

Note. A similar problem appeared as Problem 10970 in The American Mathematical
Monthly, Vol. 109, No. 9, November, 2002.

Also solved by Herb Bailey, Michel Bataille (France), Knut Dale (Norway), Daniele Donini (Italy), Ovidiu
Furdui, Julien Grivaux (France), John G. Heuver (Canada), Enkel Hysnelaj (Australia), Elias Lampakis (Greece),

Murray S. Klamkin (Canada), Vivek Kumar Mehra (India), Peter E. Niiesch (Switzerland), Raul A. Simon (Chile),
Helen Skala, Michael Vowe (Switzerland), Li Zhou, and the proposer.

Answers

Solutions to the Quickies from page 70.

A937. Consider the lattice points with positive coordinates under the graph of x =
n/y — 1/2. Forinteger | < k < n, the number of such points with first coordinate k is
Lk+”l/2J' Summing, we find the total number of lattice points is ), _, L;ﬁﬁ} Next note
that for integer 1 < k < n, the number of positive integer lattice points with second
coordinate k to the left of the curve is |[n/k — 1/2] = |n/k + 1/2] — 1. Thus the total

number of such points is Y _,_,[n/k + 1/2] — n. This completes the proof.
A938. Leta, b € G witha # b. Then G = aG = bG, so

s = Zg = Zag =as = Zbg = bs.
g€l

gelC el

It follows that (¢ — b)s = 0. Because b — a # 0, we conclude that either s = O or s is
a zero divisor in R.

As an example for which s # 0, consider the ring Z/9Z ot integers modulo 9. Let
G = {1, 4, 7} be the cyclic subgroup under multiplication generated by 4. The sum of
the elements of G is 3, a nonzero divisor of zero in Z/97.

For a second example let M 3(F) denote the ring of 3 x 3 matrices over the field F,
and let G be the multiplicative subgroup

1 00 01 0 0 0 1
G = o1 0], 0o o0 1], 1 0 0],
0 0 1 1 00 010
010 1 0 0 0 0 1
1 0 01, 0o 0 11, 01 0
0 0 1 010 1 00
The sum of the elements of G is
2 2 2
2 2 21,
2 2 2

which is a nonzero zero divisor when F is not of characteristic 2. Note that both the
ring and the group (which is isomorphic to the symmetric group S3) are noncommuta-
tive.
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PAUL ). CAMPBELL, Editor
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Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this
section to call attention to interesting mathematical exposition that occurs outside the main-
stream of mathematics literature. Readers are invited to suggest items for review to the editors.

Kolata, Gina, In Archimedes’ puzzle, a new eureka moment, New York Times (14 December
2003) 1, 46 (National Edition, pp. 1, 32); http://www.nytimes.com/2003/12/14/
science/14MATH.html .

Tangrams are seven polygons that form a square; children have fun rearranging the pieces into
objects, animals, and more. Dictionaries cite the Chinese Tang dynasty (618-907) as the origin
of the name. But a reinterpretation of Archimedes’ Stomachion suggests his familiarity with
such puzzles centuries earlier and an interest in combinatorial questions. Reviel Netz (Stanford
University) interprets a diagram in the Archimedes palimpsest, with the word “multitude,” as
asking how many ways 14 polygons can form a square (answer: 17,152). We cannot be sure that
this was Archimedes’ intention, since the surviving fragment of the Stomachion contain nothing
further on the topic. However, Netz’s speculation—a far better explanation of the fragmentary
Stomachion than any other—raises the prospect that Archimedes was a pioneer also in the field
of combinatorics.

Brynsrud, Espen, Swede helps crack historic math problem, Aftenposten Nettutgaven
(26 November 2003); http://www.aftenposten.no/english/world/article.jhtml?
articleID=678371 . Whitehouse, David, Historic maths problem ’cracked’, BBC (27 No-
vember 2003), http://news.bbc.co.uk/1/hi/sci/tech/3243736.stm . Whitfield, John,
Mathematicians dispute proof of century-old problem, Nature (9 December 2003), http:
//wuw.nature.com/nsu/031208/031208-4. html . Maths muddle, New Scientist (13 De-
cember 2003) 19. Roy, Edmond, 22-year-old cracks historic maths problem [includes inter-
view], ABC (Australia) (20 December 2003), http://www.abc.net.au/am/content/2003/
51014078 .htm . Oxenhielm, Elin, On the second part of Hilbert’s 16th problem (author-
corrected proof) (3 December 2003) http://www.sciencedirect.com/ . Zhou, Yishao,
Disclaimer http://www.math.su.se/"yishao/16thproblem.shtml . Discussion: http:
//www.unstruct.org/archives/000186.html . Oxenhielm, Elin, About ... the mathemati-
cal criticism on my paper (8 December 2003), http://www.oxenhielm. com/ .

A Swedish graduate student, Elin Oxenhielm at Stockholm University, may in a few hours have
solved the second part of Hilbert’s 16th problem. That problem is about algebraic curves and
surfaces; its second part, about boundary cycles for polynomial differential equations, is to show
that the number of periodic solutions to a differential equation is finite. Her paper appears (for
$30) only online from Nonlinear Analysis, no preprints at http://xxx.lanl.gov/archive/
math. Yet her adviser Yishao Zhou has published a disclaimer that “the paper is incorrect. ..
I could not imagine that the article would be accepted,” and other mathematicians have also
objected. Meanwhile, the journal, which had sent the paper to a single referee, has halted print
publication and sent the paper to two more referees. Oxenhielm furnishes encouraging emails
from Zhou but refuses further comment except to say that “the journal is responsible for [the
paper’s] correctness” (!)
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Finch, Stephen R., Mathematical Constants, Cambridge University Press, 2003; xix + 602 pp,
$95. ISBN 0-521-81805-2.

Mathematicians are familiar with a great many mathematical constants, but there are more con-
stants in this book than you could ever have imagined, particularly in the seven chapters after
the one entitled “Well-Known Constants.” The treatment of each constant or family includes its
own set of references.

Lang, Robert J., Origami Design Secrets: Mathematical Methods for an Ancient Art, A K Peters,
2003; viii + 585 pp, $48 (P). ISBN 1-56881-194-2.

This book is not a “step-by-step recipe book for design” of origami figures, but a collection of
“codified mathematical and geometric techniques for developing a desired structure.” The art of
origami is beautifully illustrated on high-quality glossy paper. The author devotes a chapter to
tree theory, the mathematics underlying the tree method ol origami design formulated in earlier
chapters, and includes a very extensive bibliography.

Devlin, Keith, 2003: Mathematicians face uncertainty, Discover 25 (1) (January 2004) 36.

“[M]athematicians finally had to agree that their prized notion of ‘absolute proof” is an unattain-
able ideal....” Author Devlin cites proofs announced in 2003 that weren’t (twin prime conjec-
ture, Poincaré conjecture) and the indecision of referees (after five years) on Thomas Hales’s
proof of the Kepler conjecture about packing of spheres. He goes on to his distinction between
the unfortunately named “right-wing” and “left-wing” definitions of proot and concludes that
mathematicians sometimes should (because they have to) “settle for ... proof beyond a reason-
able doubt.” Discover magazine ranked this story 8th among 100 science stories of 2003.

Sudan, Madhu, Quick and dirty referceing, Science 301 (29 August 2003) 1191-1192.

After the mudslinging surrounding Oxenhielm’s paper and Devlin's attack on absolutism in
mathematics, mathematicians may be somewhat relieved to learn that author Sudan (winner
of the Nevanlinna Prize) and others have shown that “a proof can be written in a format that
makes error detection very easy.” After all, as Sudan remarks, *“Proofs are by definition [sup-
posed to be] easy to verify, whereas theorems in general are hard to prove.” The method is a
probabilistic procedure (there goes certainty!), and the new format is called a probabilistically
checkable proof (PCP). Sudan shows how proving a particular theorem can be converted into
an instance of the traveling salesperson problem; he then notes that PCPs are based on a sim-
ilar transformation of the theorem and its proof into polynomials, accompanied by a “validity
relation” operator. “Given a polynomial [the theorem], does there exist another polynomial [a
proof] of pre-determined degree such that the validity operator maps the pair to the zero polyno-
mial?” Mathematicians may not adopt PCPs—after all, as Sudan notes, mathematicians “‘look
to proof's for providing insight and intuition”—but PCPs may provide a method to verify correct
execution of computer programs.

Kolata, Gina, What is the most important problem in math today?, New York Times (11 Novem-
ber 2003) D13.

OK, before you read the next line, what’s your guess? Given that there have been three popular
books about it in the past year or so, it must be ... the Riemann Hypothesis.

Senn, Stephen, Dicing with Death: Chance, Risk and Health, Cambridge University Press; xii
+ 251 pp, $75, $28 (P). ISBN 0-521-83259-4, 0-521-54023-2.

This book about “biostatistics” is the most engrossing popular book on probability that I have
read in a long time. The likelihood ratio arises on p. 8 already, hypothesis tests per se do not
appear, the normal distribution rears up about three-quarters of the way through, and dozens of
concepts in probability make natural appearances in memorable applied contexts, some involv-
ing risk and death.



NEWS AND LETTERS

62nd Annual William Lowell Putnam
Mathematical Competition

Editor’s Note: Additional solutions will be printed in the Monthly later in the year.

Problems

A1l Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,

n=a+a+- - +a,

with k an arbitrary positive integer and a; < a, < --- < a;x < ar + 1? For example,
with n = 4, there are four ways: 4,2 +2, 1 +1+2,1+1+1+1.

A2 Leta,,as,...,a, and by, bs, . .., b, be nonnegative real numbers. Show that
(@iaz--an)'"" + (biby - - b)'" < ((@r + b)) a2+ b2) -+ (an + b)) '™,
A3 Find the minimum value of
| sinx 4 cos x 4 tanx + cotx + secx + csc x|

for real numbers x.
A4 Suppose that a, b, ¢, A, B, C are real numbers, a # 0 and A # 0, such that

lax* + bx + c| < |Ax* 4+ Bx + C|

for all real numbers x. Show that |b?> — 4ac| < |B> — 4AC]|.

A5 A Dyck n-path is a lattice path of n upsteps (1, 1) and n downsteps (1, —1) that
starts at the origin O and never dips below the x-axis. A return is a maximal sequence
of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path
illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no
return of even length and the Dyck (rn — 1)-paths.

Qg

A6 For a set § of nonnegative integers, let rs(n) denote the number of ordered pairs
(s1, $7) such that s, € S, 5, € S, 51 # 52, and s, + s, = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that r, (n) = rg(n) forall n?
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B1 Do there exist polynomials a(x), b(x), c(y), d(y) such that
1+ xy +x7y* = a(x)c(y) + b(x)d(y)

holds identically?

B2 Letn be a positive integer. Starting with the sequence 1, 1/2, 1/3, ..., 1/n,form a
new sequence of n — 1 entries 3/4, 5/12, ..., 2n — 1)/(2n(n — 1)), by taking the av-
erages of two consecutive entries in the first sequence. Repeat the averaging of neigh-
bors on the second sequence to obtain a third sequence of n — 2 entries and continue
until the final sequence produced consists of a single number x,,. Show that x, < 2/n.

B3 Show that for each positive integer n,
n!=[Jlem{1,2,... [n/i]).
=l

(Here lcm denotes the least common multiple, and | x| denotes the greatest integer
<x.)

B4 Let f(z) =az* + b +cz> +dz+e=a(z —r)(z—r)(z —ry)(z — ry) where
a, b, ¢, d, e are integers, a # 0. Show that if r, + r, is arational number, and if | 4 r;,
# r3 + rq, then r,r, is a rational number.

B5 Let A, B, and C be equidistant points on the circumference of a circle of unit
radius centered at O, and let P be any point in the circle’s interior. Let a, b, ¢ be
the distances from P to A, B, C respectively. Show that there is a triangle with side
lengths a, b, ¢, and that the area of this triangle depends only on the distance from P
to O.

B6 Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show
that

I pl 1
// If(x)+f()')ldxdy>/ | f(x)|dx.
0J0 0

Solutions

Solution to A1 The answer is n. To see this, we will show that foreach k, | < k < n,
there is a unique solution with k£ summands. Given a solution with k£ summands, there
is an r between 0 and kK — 1 such thatn = a, +a, +--- +ay_,4+1 + - - - + a, where
a=---=qa,anday_,,; =---=a, = a; + 1. Thus, n = a,k + r. This implies that
a, = |n/k] ,and r is the remainder of n mod k. So there can be only one such solution.
But choosing the a;s as described provides one such solution.

Solution to A2 If any variable is O then the result is trivial, so we may assume that all
are positive. Divide both sides by the right-hand side. Thus we are to show that

(G55) @) (G- (G))
+ <1.
al+b] a,,—i—b,, a1+b1 a,,+bn

By two applications of the arithmetic-geometric mean inequality, we see that the left-
hand side above is

<1< q Ly +1 b T by, _
“n\a +b a, + b, n \a, + b a,+b,)
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Solution to A3 Set u = sinx + cosx. Then u?> = 1 4 2sinx cos x. Computation
shows that the given expression is the absolute value of the function

u+1 2 2
u+ u+—=1+(u—1)+mzf(u).

Ww—-02 u—1

When u > 1, applying the arithmetic-geometric mean inequality to the second and
third terms of f shows that f > 1 4+ 2+4/2, with equality when u = 1 4+ +/2. When
u < 1, the same inequality shows that f < 1 — 2+/2, with equality when u = 1 — +/2.
Taking absolute values, we see that the minimum value over the domain of interest is

22 — 1.

Solution to A4 Put f(x) = ax>+ bx +c, F(x) = Ax* 4+ Bx + C, d = b* — 4ac,
D = B? — 4AC. By replacing f by — f if necessary, we may assume a > 0. Similarly,
we may assume A > 0.

If D > 0 then F has two distinct real roots ry, r,, and on taking x = r;, x =
ry, we deduce that f also vanishes.at the points ;. Thus f(x) = a(x —r))(x —ry)
and F(x) = A(x — r;)(x — rp). The given inequality implies that a < A. Then d =
a*(ry — r)? < A%(ry — rp)> = D.If D < 0, we consider two cases:

Case I. d < 0. Onletting x — 00,0 < a < A. Since

min B D min b d
x real F(x):F<—§Z> ——4—A and x real f(x):f<—5) ——4—a,

it follows that

andso0 < —d < —D.
Case 2. d > 0. Since F(x) £ f(x) > 0 for all x it follows that the discriminant of
F £ fis < 0. That is,

(B+b)*—4(A+a)(C +¢)<0,(B—b)?—4(A—a)(C —c¢)<0O.

On adding these two inequalities we find that 2(D 4+ d) < 0,500 <d < —D.

Solution to AS We exhibit a bijection between the two sets. Suppose we are given a
Dyck n-path with no returns of even length. It begins with U and later returns to the x-
axis. Now delete the path’s first step U and the last step D of the first such return. The
result is a Dyck (n — 1)-path. This map is the desired bijection. To reverse it, suppose
a Dyck (n — 1)-path P is given; if P has no returns of even length, prepend UD to
P, otherwise locate the initial segment of P through the last even-length return and
“elevate” this segment, that is, put a U in front and a D after it.

Solution to A6 Yes. Let A be the set of nonnegative integers whose binary expansion
has an even number of 1s and let B be those with an odd number of Is. Given n and
a; # a; € A with sum n, locate the first position in which the binary digits of ay, a,
differ (starting from the units digit) and interchange these digits. This gives a bijection
from the ordered pairs counted by r4 (n) to those counted by rg(n), with inverse given
by the same procedure. So A, B form a partition as desired.

Solution to B1 There do not exist such polynomials. To see this, suppose there are
such polynomials, and write a(x) = ay + a;x + a;x* + --- and b(x) = by + byx +
byx* + ---. Then, equating coefficients of 1, x, and x2, we would have the system of
equations
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1 = apc(y) + bod(y)
y=ac(y)+bd(y)
v = axc(y) + byd ().

This system has no solution because c(y), d(y) span at most a 2-dimensional sub-
space of the space of polynomials in y and {1, y, y*} would belong to this span, but
these three polynomials are linearly independent.

Solution to B2 More generally, if we start with the sequence ay, a», . . . a,, we show
inductively that the kth sequence is

S k-1
(5
r=0

The base case k = 1 is trivial. Assume the result for k; then the ith entry in the
(k 4 1)st sequence is

1 1 k=1 1N k=1
E(—zk—'z( . >61i+r+—2k_|2( P >51i+r+|

r=0 r=0

(& (k=1 Sl gy | sk
=5 (S Yot B ) =22 ()

r=|1 I

l<i<n—k+1

So, the final number x,, is

Il I Z‘ n— | |
o Aoy = ——
2nfl — e 1+ 2/,~| — r 1 +r

I &1 n o, 2
:z'IIFZ;(Hl)—@l@"“;-

=0

Solution to B3 For each prime p, we know that the power of p inn'is Y, _ ln/p*].

Thus it suffices to prove that the power of p on the right-hand side is the same. The
power of p inlemf{l, 2, ...,m} is p/ where p/ < m < p/T'. Thus if k is given then
the power of pin {I,2, ..., |n/i]} is precisely p* if n/p*™' < i < n/p*. There are
exactly [n/p**'] — |n/p*] such i. Hence the power of p in the right-hand side above

SESEES S}

Solution to B4 Clearly f(r, + r;) is a rational number. By the factored form of f we
see that

fri+r) =arr(r +r—r)(r +ra—ry)
=aryra(ry + ) (r +r2 —r3 —ry) +aryraryry.
Here ar ryrsry = e is an integer, and
rtr—ry—ras=2(ri+r) - +rn+r+rn) =2 +r)+bja

is rational. Hence
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fri+nr)—e
a(ri+r,—r3—ry)

=riry(r1 +12)

is rational. If r; 4+ r, # O then we are done. If r, = —r; then
ar} +br} +cerf+dri+e=0=ar! —bri +cr —dr, —e,

which gives (br12 + d)r; = 0.If r{ = 0 then r;r, = 0, a rational number, and we are
done. Note that b # 0, since b = 0 and r; + r, = 0 together imply that »; + r, =
r3 + r4, contrary to our hypothesis. Thus r; = +./—d /b and r, = F+/—d /b, so that
rir, = d/b is rational in this case also. This completes the proof.

Solution to B5 Representing points in the plane by complex numbers, we may take
A=1,B=w C=w? where = (—1 4 i~+/3)/2 is a cube root of unity. The line
segments AP, BP, and CP then have lengths |P — 1|, |P — w|, and | P — @?|, which
form the sides of a triangle if and only if there exist complex numbers z,, z;, z3 (the tri-
angle vertices) such that |z, — z3|, |zo — z3|, and |z3 — zz| are equal to | P — 1|, | P — o],
and |P — w?|.

Such numbers do exist, defined by z; —z3 =P — 1,20 —z1 = w(P — w), z3 —
22 = w*(P — w?). The sum of these three complex numbers is zero, so, when consid-
ered as vectors, they are the sides of a triangle.

Write P = x + iy. The area of the triangle, found by computing the cross product
of two of the sides, is (up to sign)equal to

V3. 1. V3 1 V3 1\ V3.,
<(x—l)(—x—§y+—2—)—y<—§ —7)-}-’2—))—7()6 +vy —1).

But x2 + y? < 1, since P is inside the circle, and so the area of the triangle is given by
V3(1 = r?)/4, where r is the distance from P to O.

Solution to B6 Let P = {x € [0, 1] : f(x) >0}and N = {x € [0, 1] : f(x) < O}.
Put P = n(P), N = n(N) (the measures of P and N, respectively). If either P = 0
or N = 0 then the inequality is obvious. Thus we may assume P > 0 and N > 0.
Consider the average values of | f| on P and N:

1 1
”:F/Pf(x)dx’ un=—ﬁfo(x)dx-
By replacing f(x) by — f(x) if necessary, we may assume p, > u,. Clearly

ff 1f() + FO)ldxdy = 2P, /f £ + FO)ldxdy = 2N,
PxP NxN

In addition,

// )+ fF(ldxdy >
PxN PxN
= |NPu, — NPp,| = NP(pp — in),

(f(x) + f(y)dxdy

and the same inequality holds for the integral over N x P. Thus, the given left-hand
side is greater than or equal to

2P2Mp+2NP(ﬂp_Mn)+2N2un:P(I‘Lp_,un)'{'(zN_])2/'Ln+P/‘Lp+N/‘Ln

1
> Pup+Nun=f F (ol dx.
0

Thanks to Byron Walden for editorial assistance.
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Martin offers everybody (not just mathematicians) creative refuge for
the imagination. The puzzles in this book are not just puzzles. Very
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ters not yet well enough understood to be applied to the practical
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—Isaac Asimov from the Preface
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